
Introduction
Welcome to the documentation for the SenseGlove Unreal Engine Plugin (a.k.a. The
SenseGlove Unreal Handbook)!

This handbook is an ongoing effort and a work in progress to document the
SenseGlove Unreal Engine Plugin. Feel free to visit this handbook on a regular basis.

Due to superior formatting and frequent updates, we recommend the online version
of the handbook; nonetheless, it's available in PDF format as well.

Tip

Feel free to check out the SenseGlove Unreal Engine Plugin landing page on Fab
as well.

The SenseGlove Unreal Engine Handbook

1 / 365

https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

Overview
To help you navigate the SenseGlove Unreal Engine Handbook, we have organized
the content into several key sections. This structured layout aims to simplify your
journey through the SenseGlove Unreal Engine Plugin, providing clear and detailed
guidance at every step.

🚀 Getting Started

This section covers the basics of the SenseGlove Unreal Engine Plugin:

Installation
Via the Epic Games Launcher
Via Microsoft Azure DevOps Repositories

Enabling and Verifying the Plugin Version
SenseCom

SenseCom on GNU/Linux
Connect to Nova gloves using Blueman Bluetooth Manager
Connect to Nova gloves using Command-line

SenseCom on Microsoft Windows
Enabling XR_EXT_hand_tracking on VR Headsets
Setup SenseGlove Default Classes

SGPawn
SGPlayerController
SGGameModeBase
SGGameInstance
SGGameUserSettings

Setup the Virtual Hand Meshes
Setup the Wrist Tracking Hardware
Setup the Grab/Release System
Setup the Touch System

The SenseGlove Unreal Engine Handbook

2 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/command-line.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/microsoft-windows.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-grab-release-system/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-touch-system/

⚙️ Plugin Configuration

This section provides detailed information on configuring the plugin:

Plugin Settings
Initialization
Game User Settings

Hardware-benchmarking
Tracking

Glove-tracking
Hand-tracking
HMD-tracking
Wrist-tracking

Debugging
Virtual Hand

Animation
Debugging
Grab
Haptics
Mesh
Touch

Overriding Settings

💡 Miscellaneous

Toipcs that do not fall under any specific category:

SenseGlove Console Commands
Deploying to Android (Standalone)
Upgrade Guide
Optimizing for Higher FPS

The SenseGlove Unreal Engine Handbook

3 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/hardware-benchmarking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/overriding-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/upgrade-guide/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/

🛠️ Advanced Topics

For users familiar with the basics, this section explores advanced features of the
plugin:

Safe Glove Access in Blueprint
OpenXR

Consuming FXRHandTrackingState
Blueprint
C++

Consuming FXRMotionControllerData
Blueprint
C++

🔌 Low-Level API

This section delves into the SenseGlove low-level API:

Low-Level Blueprint API
Low-Level C++ API

📑 Appendix

The appendix contains various extra useful information:

Platform Support Matrix
Planned Features Completion Status
Changelog
Directory Structure
Extra Resources

The SenseGlove Unreal Engine Handbook

4 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/safe-glove-access-blueprint/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/planned-features-completion-status.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/directory-structure.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/extra-resources.html

Plugin Installation
The SenseGlove Unreal Engine Plugin could be installed using various methods:

Via the Epic Games Launcher by navigating to the SenseGlove Unreal Engine
Plugin landing page on Fab.
Via the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps repository.

In the following chapters, we discover each of those methods:

Installation via the Epic Games Launcher
Installation via Microsoft Azure DevOps Repositories

Video Tutorials

We also have older videos demonstrating both installation methods on Microsoft
Windows and GNU Linux in more detail.

Plugin installation guide for Microsoft Windows:

SenseGlove UE Tutorial 01 | Getting Started on WindowsSenseGlove UE Tutorial 01 | Getting Started on Windows

The SenseGlove Unreal Engine Handbook

5 / 365

https://store.epicgames.com/en-US/download
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
https://youtu.be/QqWeRHNceqY
https://www.youtube.com/watch?v=QqWeRHNceqY

Plugin and examples installation guide for GNU/Linux:

SenseGlove UE Tutorial 03 | Getting Started on LinuxSenseGlove UE Tutorial 03 | Getting Started on Linux

The SenseGlove Unreal Engine Handbook

6 / 365

https://youtu.be/1T7LAGp3e6I
https://www.youtube.com/watch?v=1T7LAGp3e6I

Plugin Installation via the Epic Games
Launcher
Before beginning the plugin installation via the Epic Games Launcher, ensure you
have signed into your Epic Games account on the Epic Games Launcher and that you
have a supported version of Unreal Engine installed. Supported engine versions can
be found in the Platform Support Matrix.

1. Run the Epic Games Launcher.

2. Navigate to the Fab tab and click Start exploring button which in turn opens
your default web browser pointing to the Fab home page.

The SenseGlove Unreal Engine Handbook

7 / 365

https://store.epicgames.com/en-US/download
https://store.epicgames.com/en-US/download
https://dev.epicgames.com/documentation/en-us/unreal-engine/installing-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://www.fab.com/

3. On the Fab home page, enter the term SenseGlove in the search box and press
Enter. Alternatively, you can go directly to the SenseGlove Unreal Engine Plugin
landing page on Fab directly instead of taking the above two steps.

The SenseGlove Unreal Engine Handbook

8 / 365

https://www.fab.com/
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

4. Click on the SenseGlove Unreal Engine Plugin in the search results to navigate
to its dedicated page.

5. On the SenseGlove Unreal Engine Plugin landing page on Fab click the Download
button.

The SenseGlove Unreal Engine Handbook

9 / 365

https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

6. If this is your first download from Fab, you will need to agree to the Fab End
User License Agreement (EULA) before proceeding.

The SenseGlove Unreal Engine Handbook

10 / 365

7. After clicking Download , a pop-up will notify you that the plugin is available in
your Vault in the Epic Games Launcher, or the Fab UE5 Plugin.

Note

According to the Fab launch announcement:

The Fab integration in UEFN is undergoing maintenance and will be back online
shortly, and the Fab integration in the Unreal Engine 5 Editor is coming soon.

8. Go back to the Epic Games Launcher, navigate to the Library tab, and in the
Fab Library section, click the Refresh Fab items button.

The SenseGlove Unreal Engine Handbook

11 / 365

https://www.unrealengine.com/en-US/blog/fab-epics-new-unified-content-marketplace-launches-today

9. Once the Fab library is refreshed and synchronized, use the Vault search box to
find the SenseGlove Unreal Engine Plugin . Click the Install to Engine button.

The SenseGlove Unreal Engine Handbook

12 / 365

10. You'll be prompted to choose a compatible engine version. Select your desired
engine version from the list, then click Install .

11. The Epic Games Launcher will show the plugin's download and installation
progress. Please wait for it to complete.

The SenseGlove Unreal Engine Handbook

13 / 365

12. While the download and installation are in progress, you can see the progress
in more details by clicking on the Downloads section on the sidebar.

The SenseGlove Unreal Engine Handbook

14 / 365

13. Once the download and installation are complete, verify its installation by
clicking Installed Plugins under the engine you've just installed it to. The
SenseGlove plugin should appear as installed among other currently installed
plugins.

The SenseGlove Unreal Engine Handbook

15 / 365

14. One last confirmation could be navigating to
YourEngineInstallationPath/Engine/Plugins/Marketplace directory. The

SenseGlove Unreal Engine Plugin source and binaries can be found inside this
directory. This is especially useful in case one desires to copy the plugin for
example to their own project's source code to run it at the project level instead
of running it at the engine level.

The SenseGlove Unreal Engine Handbook

16 / 365

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

The SenseGlove Unreal Engine Handbook

17 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

Plugin Installation via Microsoft Azure
DevOps Repositories
While plugin installation via the Epic Games Launcher is the most convenient method
for most users to obtain and install the latest version of the SenseGlove Unreal
Engine Plugin via Fab, there might be valid reasons to instead download and install
the plugin directly from the SenseGlove Unreal Engine Plugin Microsoft Azure
DevOps Repository. These reasons may include:

Downloading an older version that is no longer available on Fab.
Downloading a recent version that has been submitted to Fab, but is still
awaiting approval and publication by the Fab Team.
Downloading an under-development, unstable release of the plugin for testing
purposes.
Or, any other specific needs that require direct access to the repository.

Nonetheless, here is a step-by-step guide to downloading and installing the plugin
from the Microsoft Azure DevOps Repositories.

Download a Specific Version

To download a specific version of the plugin, follow these steps:

1. Navigate to the the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps
Repository.

2. Locate the branch dropdown menu at the top of the page, just below the
navigation bar, and next to the Copy to clipboard icon. There you'll find a
dropdown menu. By default, it usually selects the master branch.

The SenseGlove Unreal Engine Handbook

18 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://www.fab.com/
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBmaster&_a=contents

3. Use the dropdown menu to choose a desired branch containing the source
code for a specific version of Unreal Engine or a specific release of the plugin
marked with a release tag.

The SenseGlove Unreal Engine Handbook

19 / 365

Note

A branch named with engine version numbers, such as 5.4 , 5.3 , etc., ususally
contains the source code for the latest stable version of the plugin compatible
with that specific Unreal Engine version, provided that version is still supported.
For a comprehensive list of supported engine versions please refer to the
Platform Support Matrix.

As a general rule of thumb, the master branch should work with any supported
Unreal Engine version. This is because it does not specify any EngineVersion
inside the main .uplugin file. However, there may be rare exceptions where it
does not work due to breaking changes between engine versions that the plugin
cannot accommodate. One such a instance occurred with version 2.0.x of the
plugin, where some breaking changes prevented UE 5.1 from sharing similar
code with versions 5.2+ . For this reason, it is generally recommended to select
a branch specific to the version of the Unreal Engine you intend to use with the
plugin.

The same principles that apply to the master branch also apply to the dev
branch, which will discuss later.

We will also cover how to obtain a working version from a tag for scenarios like
the one mentioned above.

4. After selecting your desired branch or tag, click on the kebab menu (three
vertical dots) located at the top right of the screen and choose Download as
Zip to obtain the source code for that branch or tag.

The SenseGlove Unreal Engine Handbook

20 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare

Download a Specific Version for a Specifc Unreal
Engine Version

As mentioned earlier, due to breaking changes between Unreal Engine versions, it
might not be feasible to share the same source code across different Unreal Engine
versions. Since release tags are created from the master branch, they contain code
compatible only with the latest version of Unreal Engine. Therefore, the instructions
for downloading a specific version from a release tag might not work with some
Unreal Engine versions. In such cases, you can use an alternative approach:

1. First, choose the appropriate branch for your desired Unreal Engine version
from the branch dropdown menu, as discussed earlier. Then navigate to the
History tab.

The SenseGlove Unreal Engine Handbook

21 / 365

2. Look via the commit history for a commit message that says bump the plugin
version to vX.X.X as all releases are finalized with this exact commit message
and the plugin version. Next, click on the commit message for the version you
are looking for.

3. Once you've selected the correct commit, click on the Browse Files button
next to the kebab menu (three vertical dots) at the top right of the screen.

The SenseGlove Unreal Engine Handbook

22 / 365

4. You should now be in the Content tab, with the branch dropdown menu
displaying the commit hash instead of a branch name or tag. Click on the kebab
menu (three vertical dots) again, and select Download as Zip . This will give you
a zip file containing the exact release you need, compatible with your chosen
Unreal Engine version.

The SenseGlove Unreal Engine Handbook

23 / 365

Download the Bleeding-edge Development Branch

Caution

The dev branch is an active development branch that is constant and ongoing
changes. As a result, the code on this branch is primarily untested and
therefore not production-ready. It may not even compile successfully or may
lack comprehensive documentation. For any serious development, it is generally
recommended to use a stable release of the plugin. The dev branch is publicly
accessible to give you a preview of upcoming features and for trial purposes
only.

The most up-to-date documentation for the dev branch can usually be found at:
at: https://unreal.dev.senseglove.com/next.

Downloading the dev branch is as easy as choosing the dev branch from the
branch dropdown menu (as discussed earlier) and then choosing Download as Zip
from the kebab menu (three vertical dots).

The SenseGlove Unreal Engine Handbook

24 / 365

https://unreal.dev.senseglove.com/next
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBdev&_a=contents

Installation

Once you have obtained the desired plugin version compatible with the Unreal
Engine version you have in mind using any of the methods mentioned above, it's
time to build and install the plugin. There are two ways to install the SenseGlove
Unreal Engine Plugin, one is at the engine level, and the other is per project.

Engine-level installation: this method makes the plugin accessible to any
project within that Unreal Engine version.

Per-project installation: this method makes the plugin accessible only to a
specific project.

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

Engine-level installation

Per-project installation

1. Locate your existing C++ or Blueprint project, or create a new project from
scratch.

Important

Before proceeding, make sure your project's Unreal Editor is closed, and you do
not have your project open in your C++ IDE to avoid any issues.

2. Inside your project's root directory create a new Plugins directory if you don't
have one already.

The SenseGlove Unreal Engine Handbook

25 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

3. Inside the Plugins directory create a new directory named SenseGlove .

4. Extract the content of your downloaded zip file into the SenseGlove directory.

5. Remove any directories or files that are only meant for use by the SenseGlove
Unreal Engine Plugin maintainers. These are not part of the distributed plugin
package and are not required by either Unreal Engine or the SenseGlove Unreal
Engine Plugin to function correctly.

The mandatory files and folders to stay are as follows:

Anything else can be safely removed. For example, these files and folders can be
safely deleted:

6. Ensure your project has the correct structure.

For a Blueprint-only project, it should look something like this:

Config
Content
Resources
Source
SenseGlove.uplugin

Handbook
Packager
.clang-format
.editorconfig
.gitattributes
.gitignore
README.md

The SenseGlove Unreal Engine Handbook

26 / 365

For a C++ project, the structure should look like this:

MyBlueprintProject
 │
 ├── Config
 │
 ├── Content
 │
 ├── Plugins
 │ │
 │ └── SenseGlove
 │ │
 │ ├── Config
 │ │
 │ ├── Content
 │ │
 │ ├── Resources
 │ │
 │ ├── SenseGlove.uplugin
 │ │
 │ └── Source
 │
 └── MyBlueprintProject.uproject

The SenseGlove Unreal Engine Handbook

27 / 365

Tip

If you are keeping your project under Git and Git LFS, consider keeping the
.gitignore and .gitattributes as they help keep irrelevant files out of the

remote repository, or manage binary blobs efficiently.

7. OK, now it's time to build the plugin.

Note

For Linux build instructions see the Linux Build Instructions section.

For a Blueprint-only project, on Microsoft Windows simply double-clicking the
project's .uproject file should present you with a pop-up informing you that some
binary modules are missing.

MyCppProject
 │
 ├── Config
 │
 ├── Content
 │
 ├── Plugins
 │ │
 │ └── SenseGlove
 │ │
 │ ├── Config
 │ │
 │ ├── Content
 │ │
 │ ├── Resources
 │ │
 │ ├── SenseGlove.uplugin
 │ │
 │ └── Source
 │
 ├── Source
 │
 └── MyCppProject.uproject

The SenseGlove Unreal Engine Handbook

28 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html#linux-build-instructions

After confirming, the build process will start automatically, and a dialog indicating
the build progress will be shown:

The SenseGlove Unreal Engine Handbook

29 / 365

Once finished successfully, the project will be loaded.

Note

Sometimes, due to an esoteric bug in some versions of Unreal Engine, the build
process for Blueprint-only projects may immediately fail after choosing Yes in
the Missing Modules dialog. If this happens, one workaround would be to try to
build the plugin inside a temporary C++ project, then copy the
Plugins/SenseGlove folder containing the binaries, from the C++ project to your

Blueprint project and then try to reopen the project again.

For C++ projects, on Microsoft Windows, right-click on your C++ .uproject file and
choose Generate Visual Studio project files :

The SenseGlove Unreal Engine Handbook

30 / 365

A dialog will pop up shows you the progress of generating the Visual Studio project
files:

The SenseGlove Unreal Engine Handbook

31 / 365

Once the project files are generated, open up the C++ project in your preferred C++
IDE and build the project. After this, the project can be loaded in the Unreal Editor.

8. Once the plugin has been built successfully, ensure the SenseGlove Unreal
Engine is enabled and verify the plugin version matches the expected version.

Linux Build Instructions

When building the SenseGlove Unreal Engine Plugin on Linux, you won't encounter
the Missing Modules dialog that appears on Microsoft Windows. Instead, examining
the Unreal Editor logs reveals that the Unreal Editor automatically chooses No in
response to the Would you like to rebuild them now? question as the No is
implied states.

The SenseGlove Unreal Engine Handbook

32 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

If your Unreal Engine installation on Linux was obtained from the GitHub Sources y
you can generate the project files using the following command:

However, if you are using a prebuilt Linux version of Unreal Engine, the main
GenerateProjectFiles.sh script at the engine root does not exists. Instead, we have

to invoke the underlying GenerateProjectFiles.sh script located elsewhere. This is a
different script which shares the same name and is also present in the GitHub

$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
 /path/to/MyBlueprintProject/MyBlueprintProject.uproject

LogLinux: Warning: MessageBox: The following modules are missing or built
with a different engine version:

 SenseGlove
 SenseGloveAndroid
 SenseGloveBackend
 SenseGloveBackendKismet
 SenseGloveBuildHacks
 SenseGloveConnect
 SenseGloveConnectImpl
 SenseGloveConnectKismet
 SenseGloveCore
 SenseGloveCoreImpl
 SenseGloveCoreKismet
 SenseGloveDebug
 SenseGloveDebugKismet
 SenseGloveEditor
 SenseGloveInterop
 (+8 others, see log for details)

Would you like to rebuild them now?: Missing MyBlueprintProject Modules: No
is implied.
LogCore: Engine exit requested (reason: EngineExit() was called)
LogExit: Preparing to exit.
LogPakFile: Destroying PakPlatformFile
LogExit: Exiting.
LogInit: Tearing down SDL.
Exiting abnormally (error code: 1)

$ /path/to/UnrealEngine/GenerateProjectFiles.sh \
 /path/to/MyProject/MyProject.uproject \
 -editor -game -makefile

The SenseGlove Unreal Engine Handbook

33 / 365

https://github.com/EpicGames/UnrealEngine
https://www.unrealengine.com/en-US/linux

sources. The main GenerateProjectFiles.sh script at the engine root is actually a
wrapper around this script.

Still, running the any of the above commands on a Blueprint project results in the
following error:

For a C++ project, however, the project files will generate without any issues:

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\
 /path/to/MyProject/MyProject.uproject \
 -editor -game -makefile

$
/path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh \
 /path/to/MyBlueprintProject/MyBlueprintProject.uproject \
 -editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK
Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt
Project file formats specified via the command line will be ignored when
generating
project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
 <ProjectFileGenerator>
 <Format>Make</Format>
 </ProjectFileGenerator>
</Configuration>

Generating Make project files:
Discovering modules, targets and source code for project...
Total execution time: 0.35 seconds
Directory '/path/to/MyBlueprintProject/MyBlueprintProject' is missing
'Source' folder.

The SenseGlove Unreal Engine Handbook

34 / 365

So, the workaround for Blueprint projects is to build the plugin inside a C++ project
and then copy the Plugin/SenseGlove directory, which contains the built binary
modules, to the corresponding directory in your Blueprint project.

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\
 /path/to/MyCppProject/MyCppProject.uproject \
 -editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK
Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt
Project file formats specified via the command line will be ignored when
generating
project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
 <ProjectFileGenerator>
 <Format>Make</Format>
 </ProjectFileGenerator>
</Configuration>

Generating Make project files:
Discovering modules, targets and source code for project...
Generating data for project indexing... 100%

Generating QueryTargets data for editor...
Total execution time: 2.98 seconds

The SenseGlove Unreal Engine Handbook

35 / 365

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\
 /path/to/MyCppProject/MyCppProject.uproject \
 -editor -game -makefile
$ make MyCppProjectEditor -C /path/to/MyCppProject/
$ cp -vr \
 /path/to/MyCppProject/Plugins/SenseGlove \
 /path/to/MyBlueprintProject/Plugins/
$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
 /path/to/MyBlueprintProject/MyBlueprintProject.uproject

The SenseGlove Unreal Engine Handbook

36 / 365

Enabling The SenseGlove Unreal Engine
Plugin and Veirfying the Plugin Version
Enabling the SenseGlove Unreal Engine Plugin is a very simple and straightforward
procedure. Furthermore, checking which version of the plugin your project is using
may sometimes come in handy, especially if you have multiple versions of the plugin
installed on different engine versions or various projects.

1. Inside the Unreal Editor for your project, select the Plugins from the Edit
menu.

2. Once the plugin window/tab is open, start typing SenseGlove until you're able
to spot the SenseGlove Unreal Engine Plugin. There you could find the plugin

The SenseGlove Unreal Engine Handbook

37 / 365

version, and other useful resources, such as the documentation website or
support contact.

3. If the plugin is not enabled, it does not have the checkmark next to it.

4. It should be easy to click the checkmark and enable the plugin if that's not the
case. Once the plugin is enabled, the Unreal Editor asks to be restarted. Click on
the Restart Now button as this is mandatory to activate the plugin inside your
project.

The SenseGlove Unreal Engine Handbook

38 / 365

5. The source code for the plugin might be required to be rebuilt depending on
how you have obtained and installed the plugin, usually the Unreal Editor lets
you know and does this automatically. If it's required to build the plugin source,
and it fails to do so, it usually suggests an alternative approach such as opening
your regenerating the project files and rebuilding the project inside a C++ IDE.
Once this is done the Editor for your projects re-opens and you can follow steps
1 and 2 in order to verify the plugin's version and availability inside your

project.

Video Tutorial

A video demonstrating the same instructions in more detail is also available on the
SenseGlove YouTube channel.

The SenseGlove Unreal Engine Handbook

39 / 365

https://youtu.be/iF0JU2kpNhw
https://www.youtube.com/@senseglove4021
https://www.youtube.com/@senseglove4021

SenseGlove UE Tutorial: Finding your Plugin VersionSenseGlove UE Tutorial: Finding your Plugin Version

The SenseGlove Unreal Engine Handbook

40 / 365

https://www.youtube.com/watch?v=iF0JU2kpNhw

SenseCom
SenseCom (short for SenseGlove Communications) is a background program that
runs alongside your Unreal Engine application. Its primary function is to discover,
and connect to SenseGlove devices on your system, exchanging data with them,
much like a "SteamVR for Haptic Gloves." The SenseGlove Unreal Engine Plugin relies
on SenseCom to communicate with any SenseGlove hardware.

Note

SenseCom is required only for communication on Windows or Linux. For
standalone Android devices, the communication functionality is embedded
directly into your application.

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

The SenseGlove Unreal Engine Handbook

41 / 365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

SenseCom on GNU/Linux
Follow these steps to quickly set up and run SenseCom on GNU/Linux:

1. First, obtain the SenseCom binaries from its GitHub repository.

2. Extract the SenseCom .zip file to a location on your computer.

3. Navigate to the SenseCom_Linux_Latest folder containing the SenseCom
binaries for GNU/Linux:

$ unzip SenseCom-main.zip -d /some/path/

$ cd /some/path/SenseCom-main/Linux/SenseCom_Linux_Latest/

The SenseGlove Unreal Engine Handbook

42 / 365

https://github.com/Adjuvo/SenseCom

4. List the files and check the executable permissions for the main SenseCom
binary, SenseCom.x86_64 :

5. As seen above the SenseCom.x86_64 binary does not have the executable
permission. Run the following command to set the executable permission for
all users:

6. Veirfy the executable permission has been set on SenseCom.x86_64 :

7. Time to run the SenseCom executable:

$ ls -ahl

total 20M
drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 .
drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 ..
drwxr-xr-x 7 mamadou mamadou 34 Apr 10 11:24 SenseCom_Data
-rw-r--r-- 1 mamadou mamadou 15K Apr 10 11:24 SenseCom.x86_64
-rw-r--r-- 1 mamadou mamadou 33M Apr 10 11:24 UnityPlayer.so

$ chmod a+x SenseCom.x86_64

$ ls -l SenseCom.x86_64

-rwxr-xr-x 1 mamadou mamadou 14720 Apr 10 11:24 SenseCom.x86_64

The SenseGlove Unreal Engine Handbook

43 / 365

8. If you have already paired any glove with your system, SenseCom should
recognize and connect to your glove(s) shortly. If not, please follow the
instructions on How to connect to Nova gloves using Blueman Bluetooth
Manager or How to connect to Nova gloves using Command-line.

$./SenseCom.x86_64

[UnityMemory] Configuration Parameters - Can be set up in boot.config
 "memorysetup-bucket-allocator-granularity=16"
 "memorysetup-bucket-allocator-bucket-count=8"
 "memorysetup-bucket-allocator-block-size=4194304"
 "memorysetup-bucket-allocator-block-count=1"
 "memorysetup-main-allocator-block-size=16777216"
 "memorysetup-thread-allocator-block-size=16777216"
 "memorysetup-gfx-main-allocator-block-size=16777216"
 "memorysetup-gfx-thread-allocator-block-size=16777216"
 "memorysetup-cache-allocator-block-size=4194304"
 "memorysetup-typetree-allocator-block-size=2097152"
 "memorysetup-profiler-bucket-allocator-granularity=16"
 "memorysetup-profiler-bucket-allocator-bucket-count=8"
 "memorysetup-profiler-bucket-allocator-block-size=4194304"
 "memorysetup-profiler-bucket-allocator-block-count=1"
 "memorysetup-profiler-allocator-block-size=16777216"
 "memorysetup-profiler-editor-allocator-block-size=1048576"
 "memorysetup-temp-allocator-size-main=4194304"
 "memorysetup-job-temp-allocator-block-size=2097152"
 "memorysetup-job-temp-allocator-block-size-background=1048576"
 "memorysetup-job-temp-allocator-reduction-small-platforms=262144"
 "memorysetup-temp-allocator-size-background-worker=32768"
 "memorysetup-temp-allocator-size-job-worker=262144"
 "memorysetup-temp-allocator-size-preload-manager=262144"
 "memorysetup-temp-allocator-size-nav-mesh-worker=65536"
 "memorysetup-temp-allocator-size-audio-worker=65536"
 "memorysetup-temp-allocator-size-cloud-worker=32768"
 "memorysetup-temp-allocator-size-gfx=262144"
Loading in SingleInstance mode

The SenseGlove Unreal Engine Handbook

44 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/command-line.html

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

The SenseGlove Unreal Engine Handbook

45 / 365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

Connect to Nova gloves using Blueman
Bluetooth Manager
Follow these steps to pair a Nova glove with your PC on GNU/Linux usng the
Blueman Bluetooth Manager:

1. Install Blueman Bluetooth Manager on your Linux distribution using the
appropriate package manager:

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

Gentoo
$ emerge -atuv net-wireless/blueman

Arch, Manjaro
$ sudo pacman -S blueman

CentOS, Fedora, AlmaLinux, Rocky Linux
$ sudo dnf install blueman

CentOS/RHEL
$ sudo yum install epel-release
$ sudo yum install blueman

Debian, Ubuntu
$ sudo apt install blueman

openSUSE
sudo zypper install blueman

Solus
$ sudo eopkg install blueman

Void Linux
$ sudo xbps-install -S blueman

The SenseGlove Unreal Engine Handbook

46 / 365

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

2. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

3. Make sure the glove is turned on.

4. Start the Blueman Bluetooth Manager and verify you have a recent version
installed by selecting Help > About from the application's menu.

5. If you don't see your glove, click the Search button on the toolbar or select
Adapter > Search from the application's menu to look for new Bluetooth

devices.

The SenseGlove Unreal Engine Handbook

47 / 365

Important

Before starting the search operation, ensure that your PC's Bluetooth controller
is turned on by verifying its status on the right side of the toolbar next to the
Bluetooth logo. If disabled, the Search button will be grayed out.

The SenseGlove Unreal Engine Handbook

48 / 365

6. A progress bar will appear on the application's status bar. If a new device is
found, it will be listed in the main device list area.

The SenseGlove Unreal Engine Handbook

49 / 365

7. Once the glove is found, click on it to select it.

8. Either right-click on the device, or go to the Device menu, then choose Pair .

9. Blueman will prompt you to pair the glove with a notification. Click Confirm to
proceed.

The SenseGlove Unreal Engine Handbook

50 / 365

9. After pairing, either right-click on the device again, or go to the Device menu,
then choose Trust .

10. If everything has been successful, the key icon indicates successful pairing, and
the checkmark confirms the device is trusted.

11. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using Blueman Bluetooth Manager.

The SenseGlove Unreal Engine Handbook

51 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/
https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow

Connecting SenseGlove Nova Glove to Linux using BluemaConnecting SenseGlove Nova Glove to Linux using Bluema……

The SenseGlove Unreal Engine Handbook

52 / 365

https://www.youtube.com/watch?v=f34ofFkx_Ow

Connect to Nova gloves using
Command-line
Follow these steps to pair a Nova glove to your PC on GNU/Linux usng command-line
and Bluez:

1. Some Linux distributions include BlueZ in their default installation. If yours
doesn't, install it using the appropriate package manager:

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

Gentoo
$ emerge -atuv net-wireless/bluez

Arch, Manjaro
$ sudo pacman -S bluez

CentOS, Fedora, AlmaLinux, Rocky Linux
$ sudo dnf install bluez

CentOS/RHEL
$ sudo yum install bluez

Debian, Ubuntu
$ sudo apt install bluez

openSUSE
sudo zypper install bluez

Solus
$ sudo eopkg install bluez

Void Linux
$ sudo xbps-install -S bluez

The SenseGlove Unreal Engine Handbook

53 / 365

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

2. Run the following command to ensure that BlueZ is installed and check your
bluetoothctl version:

3. Ensure that the bluetooth service is started and running. For example, on
Gentoo Linux:

You might see one of these outputs based on whether it's already running or not:

4. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

5. Make sure the glove is turned on.

6. Use bluetoothctl list or bluetoothctl show command to extract your PC's
Bluetooth Controller MAC Address which is useful for later on:

bluetoothctl version
Version 5.77

$ rc-service bluetooth start

 * Starting bluetooth ...
or
 * WARNING: bluetooth has already been started

The SenseGlove Unreal Engine Handbook

54 / 365

$ bluetoothctl list

Controller CC:15:31:90:69:87 BlueZ 5.77 [default]

$ bluetoothctl show
Controller CC:15:31:90:69:87 (public)
 Manufacturer: 0x0002 (2)
 Version: 0x0b (11)
 Name: BlueZ 5.77
 Alias: BlueZ 5.77
 Class: 0x007c010c (8126732)
 Powered: yes
 PowerState: on
 Discoverable: no
 DiscoverableTimeout: 0x0000003c (60)
 Pairable: no
 UUID: Message Notification Se.. (00001133-0000-1000-8000-00805f9b34fb)
 UUID: A/V Remote Control (0000110e-0000-1000-8000-00805f9b34fb)
 UUID: OBEX Object Push (00001105-0000-1000-8000-00805f9b34fb)
 UUID: Message Access Server (00001132-0000-1000-8000-00805f9b34fb)
 UUID: PnP Information (00001200-0000-1000-8000-00805f9b34fb)
 UUID: IrMC Sync (00001104-0000-1000-8000-00805f9b34fb)
 UUID: Headset (00001108-0000-1000-8000-00805f9b34fb)
 UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)
 UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
 UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9b34fb)
 UUID: Audio Sink (0000110b-0000-1000-8000-00805f9b34fb)
 UUID: Device Information (0000180a-0000-1000-8000-00805f9b34fb)
 UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
 UUID: Handsfree Audio Gateway (0000111f-0000-1000-8000-00805f9b34fb)
 UUID: Audio Source (0000110a-0000-1000-8000-00805f9b34fb)
 UUID: OBEX File Transfer (00001106-0000-1000-8000-00805f9b34fb)
 Modalias: usb:v1D6Bp0246d054D
 Discovering: no
 Roles: central
 Roles: peripheral
Advertising Features:
 ActiveInstances: 0x00 (0)
 SupportedInstances: 0x0c (12)
 SupportedIncludes: tx-power
 SupportedIncludes: appearance
 SupportedIncludes: local-name
 SupportedSecondaryChannels: 1M
 SupportedSecondaryChannels: 2M
 SupportedCapabilities.MinTxPower: 0xffffffde (-34)
 SupportedCapabilities.MaxTxPower: 0x0007 (7)
 SupportedCapabilities.MaxAdvLen: 0xfb (251)

The SenseGlove Unreal Engine Handbook

55 / 365

7. Ensure the controller is powered on:

8. Enable the agent to listen for Bluetooth events that require user interaction,
such as pairing requests and managing device authorizations:

9. Set the current agent as the default agent:

10. Set the controller to be discoverable for 180 seconds:

Note

To change the default discoverable timeout, you can set it manually using the
bluetoothctl discoverable-timeout command.

 SupportedCapabilities.MaxScnRspLen: 0xfb (251)
 SupportedFeatures: CanSetTxPower
 SupportedFeatures: HardwareOffload

$ bluetoothctl power on

Changing power on succeeded

$ bluetoothctl agent on

$ bluetoothctl default-agent

No agent is registered

$ bluetoothctl discoverable on

bluetoothctl discoverable on
hci0 new_settings: powered connectable ssp br/edr le secure-conn wide-band-
speech
hci0 new_settings: powered connectable discoverable ssp br/edr le secure-conn
wide-band-speech
Changing discoverable on succeeded

The SenseGlove Unreal Engine Handbook

56 / 365

11. Then, make the controller pairable as well:

12. Begin scanning for devices:

13. After a few seconds, list the discovered devices:

bluetoothctl devices

Note

If your device is not listed yet, you can run this command multiple times as
bluetoothctl continues the device discovery in the background.

$ bluetoothctl discoverable-timeout 300

Changing discoverable-timeout 300 succeeded

$ bluetoothctl pairable on

hci0 new_settings: powered connectable discoverable bondable ssp br/edr le
secure-conn wide-band-speech
Changing pairable on succeeded

$ bluetoothctl scan on

SetDiscoveryFilter success

Device 78:D2:52:42:33:2F 78-D2-52-42-33-2F
Device 94:3C:C6:47:65:72 NOVA-1217-L
Device AC:F1:08:37:9F:93 LG DSN7CY(93)
Device 70:D6:10:9D:73:8F 70-D6-10-9D-73-8F
Device 7F:2C:8C:8D:09:9F 7F-2C-8C-8D-09-9F
Device F9:56:4B:86:1E:13 F9-56-4B-86-1E-13
Device C9:A3:07:41:91:B0 iLamp
Device 4F:9D:F8:20:43:F3 Bedroom
Device CC:B1:1A:2D:A8:A4 [TV] UE40J5500
Device A0:D7:F3:76:14:51 [TV] Samsung AU7100 75 TV
Device 5C:17:CF:1D:35:37 OnePlus 8 Pro
Device E2:F8:03:F6:D8:CB E2-F8-03-F6-D8-CB
Device 38:18:4C:E9:69:7A LE_WH-1000XM3
Device B8:D6:1A:BA:81:32 Nova 2 0667-L

The SenseGlove Unreal Engine Handbook

57 / 365

14. Use the following command to pair with the discoved glove:

For example:

Note

If you encounter the Failed to pair: org.bluez.Error.AuthenticationFailed
error message, it might be misleading. Check if there is a line with the glove's
MAC address followed by Connected: yes , which indicates that the connection
was actually successful.

15. Mark the device as trusted by issuing the following command:

For example:

16. Attempt to connect to the glove again:

$ bluetoothctl pair GLOVE_MAC_ADDRESS

$ bluetoothctl pair 94:3C:C6:47:65:72

Attempting to pair with 94:3C:C6:47:65:72
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
[CHG] Device 94:3C:C6:47:65:72 Bonded: yes
[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes
[CHG] Device 94:3C:C6:47:65:72 Paired: yes
Pairing successful

Attempting to pair with 94:3C:C6:47:65:72
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
Failed to pair: org.bluez.Error.AuthenticationFailed

$ bluetoothctl trust GLOVE_MAC_ADDRESS

$ bluetoothctl trust 94:3C:C6:47:65:72

[CHG] Device 94:3C:C6:47:65:72 Trusted: yes
Changing 94:3C:C6:47:65:72 trust succeeded

The SenseGlove Unreal Engine Handbook

58 / 365

For example:

Note

Again, the error message may be misleading. The connection is often successful
despite the error.

17. If desired, you can extract some information from the glove using:

For example:

18. Create an RFCOMM device:

$ bluetoothctl connect GLOVE_MAC_ADDRESS

$ bluetoothctl connect 94:3C:C6:47:65:72

Attempting to connect to 94:3C:C6:47:65:72
[CHG] Device 38:18:4C:E9:69:7A RSSI: 0xffffffd0 (-48)
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes
Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable

$ bluetoothctl info GLOVE_MAC_ADDRESS

bluetoothctl info 94:3C:C6:47:65:72
Device 94:3C:C6:47:65:72 (public)
 Name: NOVA-1217-L
 Alias: NOVA-1217-L
 Class: 0x00001f00 (7936)
 Paired: yes
 Bonded: yes
 Trusted: yes
 Blocked: no
 Connected: yes
 LegacyPairing: no
 UUID: Serial Port (00001101-0000-1000-8000-00805f9b34fb)

The SenseGlove Unreal Engine Handbook

59 / 365

For example:

Note

The rfcomm command requires root permision, so it must be run with sudo .

Tip

To determine the channel number, run the following command:

Note

If you have more than one glove or in general multiple serial Bluetooth devices
connected to your device connected to your PC, then /dev/rfcomm0 may already
be allocated to another device. In that case, increment the number until finding

$ sudo rfcomm connect /dev/rfcommX GLOVE_MAC_ADDRESS CHANNEL_NUMBER

$ sudo rfcomm connect /dev/rfcomm0 94:3C:C6:47:65:72 1

Connected /dev/rfcomm0 to 94:3C:C6:47:65:72 on channel 1
Press CTRL-C for hangup

$ sdptool browse GLOVE_MAC_ADDRESS

$ sdptool browse 94:3C:C6:47:65:72
Browsing 94:3C:C6:47:65:72 ...
Service Name: SPP_SERVER
Service RecHandle: 0x10000
Service Class ID List:
 "Serial Port" (0x1101)
Protocol Descriptor List:
 "L2CAP" (0x0100)
 "RFCOMM" (0x0003)
 Channel: 1
Profile Descriptor List:
 "Serial Port" (0x1101)
 Version: 0x010

The SenseGlove Unreal Engine Handbook

60 / 365

a free rfcomm device. You can query the existing rfcomm devices using the
command: ls /dev/rfcomm* .

19. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

20. Once the SenseCom is closed and we are done with the gloves, we can
disconnect the gloves using:

For example:

Note

Again, the rfcomm command requires elevated permissions, so it must be run
with the sudo command.

Scripts to Easily Connect and Disconnect from a Glove

You can automate the above tedious process using scripts for connecting and
disconnecting gloves.

sg-connect.sh :

$ bluetoothctl disconnect ${SG_DEVICE}
$ sudo rfcomm release ${SG_RFCOMM}

$ bluetoothctl disconnect 94:3C:C6:47:65:72
$ sudo rfcomm release /dev/rfcomm0

The SenseGlove Unreal Engine Handbook

61 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/

sg-disconnect.sh :

#!/usr/bin/env sh

CTRL_DEVICE="YOUR_BLUETOOTH_CONTROLLER_MAC_ADDRESS"
SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcomm0"

bluetoothctl pairable on
bluetoothctl discoverable on
bluetoothctl pair ${SG_DEVICE}
bluetoothctl trust ${SG_DEVICE}
bluetoothctl connect ${SG_DEVICE}
rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

#!/usr/bin/env sh

SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcomm0"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

The SenseGlove Unreal Engine Handbook

62 / 365

Example Scripts for a Left-Handed Glove

$ cat sg-connect-left.sh

#!/usr/bin/env sh

CTRL_DEVICE="CC:15:31:90:69:87"
SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm0"

bluetoothctl pairable on
bluetoothctl discoverable on
bluetoothctl pair ${SG_DEVICE}
bluetoothctl trust ${SG_DEVICE}
bluetoothctl connect ${SG_DEVICE}
rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

$ cat sg-disconnect-left.sh

#!/usr/bin/env sh

SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm0"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

Set the executable permissions for all users:
$ chmod a+x sg-connect-left.sh
$ chmod a+x sg-disconnect-left.sh

Before running SenseCom:

$ sudo ./sg-connect-left.sh

Password:

Changing pairable on succeeded
hci0 new_settings: powered connectable bondable ssp br/edr le secure-conn
wide-band-speech
hci0 new_settings: powered connectable discoverable bondable ssp br/edr le
secure-conn wide-band-speech
Changing discoverable on succeeded
Attempting to pair with 94:3C:C6:47:65:72
Failed to pair: org.bluez.Error.AlreadyExists
Changing 94:3C:C6:47:65:72 trust succeeded
Attempting to connect to 94:3C:C6:47:65:72

The SenseGlove Unreal Engine Handbook

63 / 365

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using the command line.

hci0 94:3C:C6:47:65:72 type BR/EDR connected eir_len 18
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes
Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable

Run SenseCom in between!

Once SenseCom is closed:

$ sudo ./sg-disconnect-left.sh

sudo ./sg-disconnect-left.sh

Password:

Attempting to disconnect from 94:3C:C6:47:65:72
hci0 94:3C:C6:47:65:72 type BR/EDR disconnected with reason 2
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: no
Successful disconnected
Can't release device: No such device

The SenseGlove Unreal Engine Handbook

64 / 365

https://youtu.be/Swkk_KmXwq8
https://youtu.be/Swkk_KmXwq8

SenseGlove Tutorial | Connecting to Nova Gloves on LinuxSenseGlove Tutorial | Connecting to Nova Gloves on Linux

The SenseGlove Unreal Engine Handbook

65 / 365

https://www.youtube.com/watch?v=Swkk_KmXwq8

SenseCom on Microsoft Windows
Follow these steps to quickly set up and run SenseCom on Microsoft Windows:

1. First, obtain the SenseCom binaries from its GitHub repository.

2. Extract the SenseCom .zip file to a location on your computer after
downloading it.

3. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

4. Make sure the glove is powered on.

5. Access Windows Bluetooth Settings by navigating to Settings > Devices >
Bluetooth & other devices .

The SenseGlove Unreal Engine Handbook

66 / 365

https://github.com/Adjuvo/SenseCom

6. Click on Add Bluetooth or other devices .

7. In the new window click on Bluetooth .

The SenseGlove Unreal Engine Handbook

67 / 365

8. Wait for the glove to be discovered, then click on it.

The SenseGlove Unreal Engine Handbook

68 / 365

9. Click Connect to connect and pair the glove.

The SenseGlove Unreal Engine Handbook

69 / 365

10. Once the glove is paired, you're good to go. Click on Done .

The SenseGlove Unreal Engine Handbook

70 / 365

11. Once you are back to Windows Bluetooth settings, verify that the glove is listed
as a paired device.

The SenseGlove Unreal Engine Handbook

71 / 365

12. After successfully paring your glove, it's time to run SenseCom. Navigate to the
folder where you extracted SenseCom and go to to
/path/to/extracted/SenseCom/directory/Win/SenseCom_Win_Latest .

The SenseGlove Unreal Engine Handbook

72 / 365

Note

Inside the /path/to/extracted/SenseCom/directory/Win/ folder, a SenseCom
installer is available if you wish to permanently install it on your operating
system.

13. In a moment, SenseCom should recognize and connect to your glove(s):

The SenseGlove Unreal Engine Handbook

73 / 365

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

14. At this stage, SenseCom is ready and you should be able to connect to and
communicate with SenseGlove devices from inside your Unreal Engine
applications.

The SenseGlove Unreal Engine Handbook

74 / 365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

Enabling XR_EXT_hand_tracking OpenXR
extension on VR Headsets

Important

Starting from version v2.1.0 , the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. Without this OpenXR

extension the plugin won't output any glove data.

Starting from version v2.1.0 , the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. If you are streaming from your

PC to your VR headset, to enabling XR_EXT_hand_tracking support, might require
additional settings depending on the vendor.

For Meta Quest headsets, enable the Developer runtime features under the
Settings > Beta section:

The SenseGlove Unreal Engine Handbook

75 / 365

Caution

Streaming to Meta Quest headsets from SteamVR is no longer supported
because the migration to OpenXR has caused controller offsets for Meta Quest
HMDs to break on SteamVR. One possible reason is that SteamVR lists
XR_FB_hand_tracking as an unsupported feature. Further investigation is

needed to identify the exact underlying cause.

For VIVE headsets relying on VIVE Business Streaming, ensure the Hand Tracking
settings under Input are enabled:

The SenseGlove Unreal Engine Handbook

76 / 365

https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/
https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/

Note

Tracking and accessing FXRMotionControllerData output from SenseGlove
devices do not require Hand and Body Tracking to be enabled on the HMD
device. Enabling this feature is only necessary if you wish to use hand-tracking
as a fallback option when no glove is connected to your PC.

As mentioned in the v2.1.0 release changelog, enabling the Meta XR plugin—and
potentially the VIVE OpenXR plugin—alongside the SenseGlove Unreal Engine Plugin
in the same project will disrupt the OpenXR functionality provided by the SenseGlove
Plugin, rendering it unusable.

Caution

As noted in the v2.1.0 release changelog, since this release enabling the Meta XR
plugin, —and potentially the VIVE OpenXR plugin— alongside the SenseGlove

The SenseGlove Unreal Engine Handbook

77 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

Unreal Engine Plugin in the same project will disrupt the OpenXR functionality
provided by the SenseGlove Unreal Engine Plugin, rendering it unusable.

Although the SenseGlove OpenXR implementation is fully compatible with the

IOpenXRHMD interface and the FOpenXRHMD XRTrackingSystem, it is not

compatible with the FOculusXRHMD backend provided by the Meta XR plugin.

The same issue likely applies to the VIVE OpenXR plugin. So, if these

plugins are enabled in your project, the SenseGlove OpenXR will not

function as intended, effectively breaking the plugin's functionality. It

seems these plugins are necessary in order to make the fallback to the

hand-tracking feature work on Android. While we may add support and

compatibility with Meta XR and VIVE OpenXR plugins in the future, for the

time being, if your project requires these plugins, we advise continuing

with the v2.0.x release of the SenseGlove Unreal Engine plugin until this

issue is addressed.

The SenseGlove Unreal Engine Handbook

78 / 365

Setting Up the SenseGlove Default
Classes
Setting up the default SenseGlove classes is recommended if you want to take full
advantage of the quality-of-life features provided by the SenseGlove Unreal Engine
Plugin. These features are designed to streamline the development process within
the Unreal Engine environment. For instance, if you need a quick setup with a virtual
hand mesh already integrated into a pawn, enabling you to get started with your
project in just a few minutes, it is essential to configure the default classes and
familiarize yourself with these classes.

If you wish to extend the functionality of these classes, you can do so by subclassing
them. The default SenseGlove classes, which are prefixed with SG , include:

SGGameModeBase
SGPawn
SGPlayerController
SGGameInstance
SGGameUserSettings

However, if you prefer a different approach or do not require the functionality
provided by the default SenseGlove classes, you can opt to utilize individual
components like SGVirtualHandComponent , SGWristTrackerComponent , etc., directly
within your own actors. Alternatively, you can develop a completely custom system
from scratch, leveraging the low-level SenseGlove C++ or Blueprint APIs.

Additionally, you can enforce setting the default SenseGlove classes during
initialization via the plugin settings, if desired.

The SenseGlove Unreal Engine Handbook

79 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/ggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/

Setting Up SGGameModeBase
After installing and enabling the SenseGlove Unreal Engine Plugin, the easiest and
most straightforward approach to get started is to just set the default GameMode to
SGGameModeBase from Edit > Project Settings... > Maps & Modes > Default Mode >
Default GameMode . By doing this, the Default Pawn Class is automatically set to
SGPawn , and the Player Controller Class is set to SGPlayerController . This setup

ensures that a SenseGlove pawn will automatically spawn when you hit the play
button in the editor.

Tip

For greater control and customization, consider extending the
SGGameModeBase.

Note

The SenseGlove Unreal Engine Handbook

80 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase

Currently, setting SGGameModeBase or a subclass of it as the Default GameMode is
not a strict requirement. Its primary function is to ensure that a default SGPawn
and SGPlayerController are set. However, this might change in the future, and
it could become a mandatory setting.

Important

While setting SGGameModeBase as the Default GameMode will automatically spawn
the default SGPawn at BeginPlay and initiate communication with the
SenseGlove devices, it will not display any virtual hands in your simulation by
default. You might still need to configure the Virtual Hand Meshes and the Wrist
Tracking Hardware separately.

Important

Before starting the simulation in the editor, make sure that SenseCom is
running and XR_EXT_hand_tracking is enabled. Without these, your simulation
will not receive hand pose data from the SenseGlove devices.

Extending SGGameModeBase

Follow these steps to extend and set up your own version of SGGameModeBase :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

The SenseGlove Unreal Engine Handbook

81 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

The SenseGlove Unreal Engine Handbook

82 / 365

3. In the expanded ALL CLASSES section, start typing SGGameModeBase in the
Search box. When SGGameModeBase appears, select it and click the Select
button to create your new Blueprint class based on it.

The SenseGlove Unreal Engine Handbook

83 / 365

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

The SenseGlove Unreal Engine Handbook

84 / 365

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

The SenseGlove Unreal Engine Handbook

85 / 365

6. Finally, set your newly created subclass of SGGameModeBase as the Default
GameMode . You can do this by navigating to Project Settings > Project > Maps
& Modes > Default Modes > Default GameMode .

The SenseGlove Unreal Engine Handbook

86 / 365

Setting Up SGPawn
Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set SGPawn as the Default Pawn Class by navigating to Project
Settings > Project > Maps & Modes > Default Modes > Selected GameMode > Default

Pawn Class . However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode and
setting the Default Pawn Class directly from there. Once set, click on the Compile
button and save your game mode Blueprint asset.

Tip

For greater control and customization, consider extending the SGPawn.

Caution

Setting SGPawn or a subclass of it as the Default Pawn Class without setting
SGPlayerController or a subclass of it as the default Player Controller Class

The SenseGlove Unreal Engine Handbook

87 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html#extending-sgpawn
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html

will cause the SGPawn to not function properly. So, it's a strict requirement.

Important

To have a fully functional SGPawn , simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Extending SGPawn

Follow these steps to extend and set up your own version of SGPawn :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

The SenseGlove Unreal Engine Handbook

88 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

The SenseGlove Unreal Engine Handbook

89 / 365

3. In the expanded ALL CLASSES section, start typing SGPawn in the Search box.
When SGPawn appears, select it and click the Select button to create your new
Blueprint class based on it.

The SenseGlove Unreal Engine Handbook

90 / 365

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

The SenseGlove Unreal Engine Handbook

91 / 365

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

The SenseGlove Unreal Engine Handbook

92 / 365

6. Finally, set your newly created subclass of SGPawn as the Default Pawn Class .
Depening on the Unreal Engine version and your project's type and
configuration, you might be able do this by navigating to Project Settings >
Project > Maps & Modes > Default Modes > Selected GameMode > Default Pawn

Class . However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode
and setting the Default Pawn Class directly from there. Once set, click on the
Compile button and save your game mode Blueprint asset.

Important

To have a fully functional SGPawn , simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Customizing SGPawn

Customizing the SGPawn after subclassing is straightforward and flexible.

The SenseGlove Unreal Engine Handbook

93 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SGPawn class includes several key subcomponents:

Wrist Tracker Left and Wrist Tracker Right of type
SGWristTrackerComponent .
HandLeft and HandRight of type SGVirtualHandComponent and represent the

virtual hand models visible to the user in the simulation.
RealHandLeft and RealHandRight of type SGVirtualHandComponent . By default,

these are hidden and represent the real hands within the simulation. These
components are useful if you need to separate the rendering of the virtual
hands from the real hands. For instance, the virtual hands typically have
collisions and cannot pass through objects, while the real hands are not
constrained in this way.

The SenseGlove Unreal Engine Handbook

94 / 365

The SenseGlove Unreal Engine Handbook

95 / 365

Also, it's possible to filter the properties for these SenseGlove components inside
the Details panel inside the SGPawn Blueprint Editor by typing the word SenseGlove
inside Search box of the Details panel.

The SenseGlove Unreal Engine Handbook

96 / 365

The SenseGlove Unreal Engine Handbook

97 / 365

Please visit how to setup the Virtual Hand Meshes, The Virtual Hand Mesh Settings,
and how to setup the Wrist Tracking Hardware sections for more information.

The SenseGlove Unreal Engine Handbook

98 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

Setting Up SGPlayerController
Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set SGPlayerController as the default Player Controller Class
by navigating to Project Settings > Project > Maps & Modes > Default Modes >
Selected GameMode > Player Controller Class . However, regardless of the engine
version or project type and configuration, you can always configure this by opening
your Default GameMode and setting the default Player Controller Class directly
from there. Once set, click on the Compile button and save your game mode
Blueprint asset.

Tip

For greater control and customization, consider extending the
SGPlayerController.

Caution

The SenseGlove Unreal Engine Handbook

99 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller

Setting SGPlayerController or a subclass of it as the default Player Controller
Class without setting SGPawn or a subclass of it as the Default Pawn Class will
cause your simulation or editor to crash. So, it's a strict requirement.

Extending SGPlayerController

Follow these steps to extend and set up your own version of SGPlayerController :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

The SenseGlove Unreal Engine Handbook

100 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

3. In the expanded ALL CLASSES section, start typing SGPlayerController in the
Search box. When SGPlayerController appears, select it and click the Select
button to create your new Blueprint class based on it.

The SenseGlove Unreal Engine Handbook

101 / 365

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

The SenseGlove Unreal Engine Handbook

102 / 365

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

The SenseGlove Unreal Engine Handbook

103 / 365

6. Finally, set your newly created subclass of SGPlayerController as the default
Player Controller Class . Depening on the Unreal Engine version and your

project's type and configuration, you might be able do this by navigating to
Project Settings > Project > Maps & Modes > Default Modes > Selected

GameMode > Player Controller Class . However, regardless of the engine
version or project type and configuration, you can always configure this by
opening your Default GameMode and setting the default Player Controller
Class directly from there. Once set, click on the Compile button and save your
game mode Blueprint asset.

The SenseGlove Unreal Engine Handbook

104 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html

Setting Up SGGameInstance
Setting SGGameInstance as the default Game Instance Class is very straightforward.
You can do this by navigating to Project Settings > Project > Maps & Modes > Game
Instance > Game Instance Class .

Tip

For greater control and customization, consider extending the
SGGameInstance.

Important

Currently, setting SGGameModeBase or a subclass of it as the default Game
Instance Class is not a strict requirement. However, if you intend to use any
SenseGlove console command it becomes mandatory. If not set, SenseGlove
console commands will not be recognized by Unreal Engine.

The SenseGlove Unreal Engine Handbook

105 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

Extending SGGameInstance

Follow these steps to extend and set up your own version of SGGameInstance :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

The SenseGlove Unreal Engine Handbook

106 / 365

3. In the expanded ALL CLASSES section, start typing SGGameInstance in the
Search box. When SGGameInstance appears, select it and click the Select
button to create your new Blueprint class based on it.

The SenseGlove Unreal Engine Handbook

107 / 365

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

The SenseGlove Unreal Engine Handbook

108 / 365

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

The SenseGlove Unreal Engine Handbook

109 / 365

6. Finally, set your newly created subclass of SGGameInstance as the default Game
Instance Class . You can do this by navigating to Project Settings > Project >
Maps & Modes > Game Instance > Game Instance Class .

The SenseGlove Unreal Engine Handbook

110 / 365

Setting Up SGGameUserSettings
Setting SGGameUserSettings as the default Game User Settings Class is very
straightforward. You can do this by navigating to Project Settings > Engine >
General Settings > Default Classes > Advanced > Game User Settings Class . Once
you change the default Game User Settings Class the Unreal Editor will prompt you
with Restart required to apply new settings . For the changes to take effect, click
on the Restart Now button and wait for the editor to reopen.

Tip

For greater control and customization, consider extending the
SGGameUserSettings.

Important

The SenseGlove Unreal Engine Handbook

111 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings

Currently, setting SGGameUserSettings or a subclass of it as the default Game
User Settings Class is not a strict requirement. However, if you intend to use
any SGGameUserSettings-related SenseGlove console command it becomes
mandatory. If not set, calling any SGGameUserSettings-related SenseGlove
console command will cause your simulation or editor to crash.

Extending SGGameUserSettings

Follow these steps to extend and set up your own version of SGGameUserSettings :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

The SenseGlove Unreal Engine Handbook

112 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

3. In the expanded ALL CLASSES section, start typing SGGameUserSettings in the
Search box. When SGGameUserSettings appears, select it and click the Select
button to create your new Blueprint class based on it.

The SenseGlove Unreal Engine Handbook

113 / 365

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

The SenseGlove Unreal Engine Handbook

114 / 365

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

The SenseGlove Unreal Engine Handbook

115 / 365

6. Finally, set your newly created subclass of SGGameUserSettings as the default
Game User Settings Class . You can do this by navigating to Project Settings >
Engine > General Settings > Default Classes > Advanced > Game User Settings

Class . Once you change the default Game User Settings Class the Unreal
Editor will prompt you with Restart required to apply new settings . For the
changes to take effect, click on the Restart Now button and wait for the editor
to reopen.

The SenseGlove Unreal Engine Handbook

116 / 365

Setting Up the Virtual Hand Meshes
Setting up Virtual Hand Meshes involves two key steps:

1. Importing the virtual hand meshes into your project.
2. Configuring the virtual hand settings.

In this section we focus on the first part. For detailed information on step two, please
visit the Virtual Hand configuration section.

Compatible Virtual Hand Meshes

The SenseGlove Unreal Engine Plugin is compatible with any virtual hand mesh that
adheres to the Epic rig and bone structure. Additionally, the virtual hand meshes
must be exported with specific settings to meet all requirements. If you're planning
to model and rig your own virtual hand meshes, the Epic FBX Skeletal Mesh Pipeline
is a useful starting point.

However, if you're looking to get up and running with the SenseGlove Unreal Engine
Plugin quickly, the process is much simpler. Unreal Engine has included two sets of
compatible virtual hand models with the Unreal Engine VR Template since version
5.1 . This guide will walk you through how to export these virtual hand models from

the VR Template and import them into your VR simulation.

Caution

While it is possible to migrate the virtual hand meshes directly from the Content
Browser of the VR Template, this approach is not recommended. As part of the
setup process, it is necessary to configure the SenseGlove Grab and Touch
sockets. Although it's possible to set up these sockets manually, as
demonstrated in one of our older tutorials, we no longer recommend doing so.
Since version v2.1.0 of the SenseGlove Unreal Engine Plugin, we’ve included a
tool that automates the socket setup with a single click, eliminating the need for
the tedious manual process.

The SenseGlove Unreal Engine Handbook

117 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
https://dev.epicgames.com/documentation/en-us/unreal-engine/fbx-skeletal-mesh-pipeline
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

Unfortunately, the SenseGlove Sockets Editor tool does not support skeletal
meshes that share their skeleton. This is the case with the hand models
included in the VR Template. Because of this limitation, we will be reimporting
the virtual hand meshes with separate skeletons to ensure full compatibility
with the SenseGlove Sockets Editor.

Exporting the Virtual Hand Meshes from the
VRTemplate

1. Start by creating a new Unreal Engine project using the VR Template. In the
Unreal Project Browser, select GAMES > Virtual Reality .

The SenseGlove Unreal Engine Handbook

118 / 365

2. Once the Unreal Editor opens with your new project, navigate to the Content
Browser. Go to All > Content > Characters > MannequinsXR > Meshes . Here,
you'll find two sets of virtual hand meshes: SDKM_MannyXR_left and
SDKM_MannyXR_right (male hands), and SDKM_QuinnXR_left and
SDKM_QuinnXR_right (female hands).

3. Choose the pair of hand meshes you want to export. Right-click on them, then
select Asset Actions followed by Bulk Export... from the context menu.

The SenseGlove Unreal Engine Handbook

119 / 365

4. In the file dialog that appears, choose a folder to save the exported hands, and
click the Select Folder button to export the meshes in FBX format.

The SenseGlove Unreal Engine Handbook

120 / 365

5. The Unreal Editor will then display the FBX Export Options dialog. Leave the
default settings unchanged and click Export All to proceed.

The SenseGlove Unreal Engine Handbook

121 / 365

The SenseGlove Unreal Engine Handbook

122 / 365

Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the

default settings.

6. After exporting, you can find the FBX files for both hands in the directory you
selected:
/path/you/chose/for/bulk/export/Game/Characters/MannequinsXR/Meshes/ .

Importing the Virtual Hand Meshes into Your Own
Project

1. Start by creating a new folder inside your project's Content Browser. Navigate
to that folder, then press the Import button next to the + Add button at the
top of the Content Browser.

The SenseGlove Unreal Engine Handbook

123 / 365

2. In the Import dialog that appears, navigate to the folder containing the virtual
hand meshes. Select both FBX files and click the Open button.

The SenseGlove Unreal Engine Handbook

124 / 365

3. The Unreal Editor will display the FBX Import Options dialog. Leave the default
settings unchanged and click Import All to proceed.

The SenseGlove Unreal Engine Handbook

125 / 365

The SenseGlove Unreal Engine Handbook

126 / 365

Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the

default settings.

4. After the import process is done, a dialog will display the import logs. Any
errors or warnings encountered during the import process will be shown here.

The SenseGlove Unreal Engine Handbook

127 / 365

Note

The following warning can be safely ignored:

FBXImport: Warning: No smoothing group information was found in this FBX

scene. Please make sure to enable the 'Export Smoothing Groups' option in

the FBX Exporter plug-in before exporting the file. Even for tools that

don't support smoothing groups, the FBX Exporter will generate appropriate

smoothing data at export-time so that correct vertex normals can be

inferred while importing.

5. The imported virtual hand meshes should now appear in the folder you
selected in the Content Browser. Unreal Engine will create a Skeletal Mesh, a
Skeleton, and a Physics Asset for each imported mesh, along with a default
Material asset shared between both virtual hand meshes.

The SenseGlove Unreal Engine Handbook

128 / 365

6. You can choose to keep or modify the default material. However, since the
SenseGlove Unreal Engine Plugin provides a default material, we choose to
delete the default material created by Unreal Engine during the import process.
We'll assign the SenseGlove default material to the imported virtual hand
meshes in the next steps. Right-click on the default material and select Delete .

The SenseGlove Unreal Engine Handbook

129 / 365

7. In the Delete Assets dialog, click Force Delete to confirm the deletion of the
default material.

The SenseGlove Unreal Engine Handbook

130 / 365

8. Open the Skeletal Mesh asset for the left hand and assign the
M_SenseGlove_VirtualHand material from the Asset Details panel.

The SenseGlove Unreal Engine Handbook

131 / 365

9. Repeat the process for the Skeletal Mesh asset of the right hand, and assign the
M_SenseGlove_VirtualHand material in the Asset Details panel.

The SenseGlove Unreal Engine Handbook

132 / 365

10. Return to the Content Browser by closing all asset windows and click the Save
All button to save all imported virtual hand mesh assets to disk.

11. In the Save Content dialog, choose Save Selected to confirm the saving all
action.

The SenseGlove Unreal Engine Handbook

133 / 365

Setting up the Rigid Bodies

1. Open the Physics Asset for the left virtual hand mesh by double-clicking it in the
Content Browser. This will open the PhAT (Physics Asset Tool) editor, where the
virtual hand mesh for the left hand will appear with a default physics body,
usually shaped as a capsule.

The SenseGlove Unreal Engine Handbook

134 / 365

2. In the Tools panel, under the Body Creation section, locate the Primitive
Type dropdown and select Box instead of the default Capsule shape. Then,
click the Generate All Bodies button at the bottom of the Tools panel to
create a new physics body.

The SenseGlove Unreal Engine Handbook

135 / 365

3. After generating the new body, some adjustments are required for optimal
interactions inside your VR simulations. Press the r key on your keyboard to
enter scaling mode and use the arrows to resize the physics body. To
reposition the body, press the w key to switch to translation mode. For
adjusting the rotation, press the e key. Toggle between these modes as
needed to fine-tune the physics body to your requirements.

4. You can always revisit and adjust the rigid body later after testing its impact in
your VR simulations. For now, save the asset and close the PhAT editor.

The SenseGlove Unreal Engine Handbook

136 / 365

5. Repeat the same procedure for the right virtual hand mesh.

Note

An older yet still relevant video tutorial demonstrating a similar procedure is
also available.

Setting up throwing objects and physics settings for the reaSetting up throwing objects and physics settings for the rea……

The SenseGlove Unreal Engine Handbook

137 / 365

https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

Setting up the SenseGlove Grab and Touch Sockets

To ensure the Grab/Release and Touch systems function correctly, multiple sockets
must be set up on each virtual hand mesh with precise locations and rotations.
Before version v2.1.0 of the SenseGlove Unreal Engine Plugin, this was a manual
and time-consuming process. However, with the v2.1.0 release, the plugin now
includes the SenseGlove Sockets Editor, a built-in tool specifically designed for this
task.

Note

If for any reason you still prefer to manually set up the sockets, a detailed video
tutorial is available.

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic FSenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F……

Accessing the SenseGlove Sockets Editor

The SenseGlove Sockets Editor can be utilized in three ways:

1. By right-clicking on any Skeleton or Skeletal Mesh asset inside the Unreal
Content Browser.

The SenseGlove Unreal Engine Handbook

138 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA
https://www.youtube.com/watch?v=jN4VcfXVrTA

Tip

You can also perform Sockets Editor actions in bulk by selecting multiple assets
of the same type and right-clicking on one of them. Note that if the selected
assets are not all of the same type, Sockets Editor actions will not appear (e.g.
selecting assets of type Skeletons and Skeletal Meshes together).

The SenseGlove Unreal Engine Handbook

139 / 365

2. From the Asset menu in the Skeleton Editor or Skeletal Mesh Editor for any
open Skeleton or Skeletal Mesh asset.

3. From the Skeleton Editor or Skeletal Mesh Editor toolbar for any open Skeleton
or Skeletal Mesh asset.

The SenseGlove Unreal Engine Handbook

140 / 365

The SenseGlove Sockets Editor currently offers two actions:

1. Add SenseGlove Sockets : which adds and sets up the SenseGlove grab and
touch sockets to any virtual hand mesh that adheres to the Epic rig and bone
structure.

2. Clear Existing Sockets : which destructively clears all existing sockets;
SenseGlove or otherwise, from any mesh.

Important

Simply performing any of these actions won't permanently modify your assets.
In fact, if you close the Unreal Editor without saving your assets first, all changes
performed by the SenseGlove Sockets Editor will be lost forever. This is by
design and the plugin will leave this final choice to the user. So, in order to apply
the changes permanently, you must save the assets manually.

Adding the SenseGlove Sockets

When you invoke the Add SenseGlove Sockets action, the Sockets Editor will prompt
you for confirmation:

The SenseGlove Unreal Engine Handbook

141 / 365

If it succeeds at adding the standard SenseGlove sockets, you will receive a
confirmation message:

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the newly added sockets:

The SenseGlove Unreal Engine Handbook

142 / 365

To ensure the changes persist, save the assets to disk.

Note

The Add SenseGlove Sockets action can fail for various reasons, so it's
important to investigate and identify the cause if an issue arises.

The SenseGlove Unreal Engine Handbook

143 / 365

Important

A common cause of failure is that the SenseGlove sockets have already been set
up, or the meshes you’re using already have the necessary sockets. In this case,
consider using the Clear Existing Sockets action first.

Caution

Another common cause of failure is if your virtual hand meshes share a
skeleton. As noted in the Compatible Virtual Hand Meshes section, the
SenseGlove Sockets Editor does not support skeletal meshes that share their
skeleton. You may need to export and re-import the virtual hand meshes in in a
compatible manner first.

In any case, the SenseGlove Sockets Editor reports all failures in the Unreal Editor
logs. To view and investigate the logs, simply head to the Window menu and click on
Output Log :

The SenseGlove Unreal Engine Handbook

144 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#clearing-all-existing-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#compatible-virtual-hand-meshes
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#exporting-the-virtual-hand-meshes-from-the-vrtemplate
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#importing-the-virtual-hand-meshes-into-your-own-project

For example, in the following screenshots the following errors are stated: Socket
'GrabAttachPoint' already exists on

'/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a

duplicate! .

The SenseGlove Unreal Engine Handbook

145 / 365

Clearing All Existing Sockets

When you invoke the Clear Existing Sockets action, the Sockets Editor will ask for
your confirmation:

LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp FSGAssetUtils::FImpl::AddSocket 394]
Socket 'GrabAttachPoint' already exists on
'/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a
duplicate!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp
FSGAssetUtils::FImpl::AddGrabAttachPointSocket 442] Failed to add the socket
'GrabAttachPoint' to '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp
FSGAssetUtils::FImpl::AddSenseGloveSockets 587] Failed to add the grab attach
point socket to asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp
FSGAssetUtils::FImpl::AddSenseGloveSockets 741] Failed to add the SenseGlove
sockets to the asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!

The SenseGlove Unreal Engine Handbook

146 / 365

If successful, you will receive a message indicating all the existing sockets have been
cleared:

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the affected assets with all sockets cleared:

The SenseGlove Unreal Engine Handbook

147 / 365

Configuring the SGPawn and Plugin Virtual Hand
Mesh Settings

The final step in setting up the virtual hand meshes is to configure the SGPawn and
Plugin Virtual Hand Mesh Settings to ensure they utilize the newly created virtual
hand meshes.

Please visit Setting Up SGPawn, The Virtual Hand Mesh Settings, and how to setup
the Wrist Tracking Hardware sections for more information.

SGPawn Configuration

In the SGPawn Blueprint class, make sure to assign the appropriate Skeletal Mesh
Asset to the following components:

HandLeft

HandRight

The SenseGlove Unreal Engine Handbook

148 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

RealHandLeft

RealHandRight

This ensures that the correct hand meshes are used for both virtual and real hands.

Plugin Virtual Hand Mesh Settings

Next, navigate to Project Settings > Plugins > SenseGlove > Virtual Hand Settings
> Mesh Settings and specify the correct left and right-hand meshes for:

Left Hand Reference Mesh

Right Hand Reference Mesh

This configuration guarantees that the tracking system correctly interprets the bone
transforms of the virtual hand meshes when generating FXRMotionControllerData .
Additionally, it allows the animation system to accurately use these bone transforms
when processing FXRMotionControllerData and animating the virtual hand meshes.

The SenseGlove Unreal Engine Handbook

149 / 365

The SenseGlove Unreal Engine Handbook

150 / 365

Setting Up the Wrist Tracking Hardware
To enable the SenseGlove Unreal Engine Plugin to track the gloves position and
rotation in the world, you need to specify a positional tracking hardware, referred to
as Wrist Tracking Hardware within the plugin. By default, if the Wrist Tracking
Hardware is not explicitly set, the plugin will attempt to automatically detect it by
identifying your Head-mounted display (HMD) hardware. However, this auto-
detection feature may not be entirely reliable, as it is still experimental, and it may
occasionally fail.

For detailed information, please visit the Wrist Tracking Hardware and HMD auto-
detection configuration section.

The SenseGlove Unreal Engine Handbook

151 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

Setting up the Grab/Release System
Setting up the SenseGlove Grab/Release System involves two main steps. The first
step, configuring the virtual hand meshes for both real and virtual hands, is handled
automatically by the plugin. The second step, which is also straightforward, involves
setting up any existing actor in the Unreal Blueprint Editor that you want to respond
to with haptic feedback when your SenseGlove device comes into contact with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into
contact with it.

2. In the Components panel, click the + Add button, then type SGGrab into the
Search Components input field. Once found, click on SGGrab to add it to the

current actor. You can rename the SGGrab component to your desired name.

3. With the SGGrab component selected in the Components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the

grab/release system to suit your needs.

The SenseGlove Unreal Engine Handbook

152 / 365

Note

Any property prefixed with Attachment is a parameter directly passed to
Unreal's FAttachmentTransformRules during the grab process, while any
property prefixed with Detachment is a parameter directly passed to Unreal's
FDetachmentTransformRules during the release process.

Caution

If AttachmentSocketName is unspecified, or incorrect the grabbable object will be
attached to the root bone of the virtual hand mesh, which probably is not ideal.

4. A key setting for the release system is located within your SGPawn instance. In
the Details panel for your SGPawn , find the Max Number of Hand Velocity
Samples setting and adjust it according to your needs. This setting determines
the velocity of objects released from the hands by averaging the specified
number of frames. Optimizing this value depends on the framerate of your
simulation at runtime.

The SenseGlove Unreal Engine Handbook

153 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

5. One last aspect of the grabbable actors to take into account for the grab
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
grabbable actor, it's necessary to set the Collision Presets to Block All
inside the Details panel for the actor's mesh components.

The SenseGlove Unreal Engine Handbook

154 / 365

6. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are
crucial for notifying the grab system when the virtual hand meshes come into
contact with the actor.

The SenseGlove Unreal Engine Handbook

155 / 365

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

The SenseGlove Unreal Engine Handbook

156 / 365

https://youtu.be/jN4VcfXVrTA

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic FSenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F……

SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

Setting up throwing objects and physics settings for the reaSetting up throwing objects and physics settings for the rea……

The SenseGlove Unreal Engine Handbook

157 / 365

https://www.youtube.com/watch?v=jN4VcfXVrTA
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

Setting up the Touch System
Configuring the SenseGlove Touch System involves two key steps. The first step,
which is automatically handled by the plugin, is configuring the virtual hand meshes
for both real and virtual hands. The second step, which is also straightforward,
involves setting up any existing actor in the Unreal Blueprint Editor that you want to
respond to with haptic feedback when your SenseGlove device comes into contact
with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into
contact with it.

2. In the Components panel, click the + Add button, then type SGTouch into the
Search Components input field. Once found, click on SGTouch to add it to the

current actor. You can rename the SGTouch component to your desired name.

3. With the SGTouch component selected in the Components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the touch

The SenseGlove Unreal Engine Handbook

158 / 365

system to suit your needs.

4. One last aspect of the touchable actors to take into account for the touch
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
touchable actor, it's necessary to set the Collision Presets to Block All
inside the Details panel for the actor's mesh components.

The SenseGlove Unreal Engine Handbook

159 / 365

5. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are
crucial for notifying the touch system when the virtual hand meshes come into
contact with the actor.

The SenseGlove Unreal Engine Handbook

160 / 365

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

The SenseGlove Unreal Engine Handbook

161 / 365

https://youtu.be/jN4VcfXVrTA

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic FSenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F……

SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

Setting up throwing objects and physics settings for the reaSetting up throwing objects and physics settings for the rea……

The SenseGlove Unreal Engine Handbook

162 / 365

https://www.youtube.com/watch?v=jN4VcfXVrTA
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

The Plugin Settings
Once the SenseGlove Unreal Engine Plugin is enabled the plugin settings can be
accessed through Edit > Project Setting... inside your project's Unreal Editor.

The SenseGlove Unreal Engine Plugin offers fine-grained control over various
aspects of its functionality through its settings system. It also allows you to override
specific settings from subcomponents when possible. In the following sections, we
will explore the settings and the override system in detail.

The SenseGlove Unreal Engine Handbook

163 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/getting-started/plugin-verify-version-enable/

Settings Categories

The plugin settings are organized into four main categories, and each of those might
contain its own sub-categories. These main categories are as follows:

The Initialization Settings
The Game User Settings
The Tracking Settings
The Virtual Hand Settings

The SenseGlove Unreal Engine Handbook

164 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/

The Plugin Initialization Settings
The Initialization Settings section is designed to control how the SenseGlove Unreal
Engine Plugin is initialized, allowing you to customize its behavior to suit your
project's needs.

bValidateIfDefaultClassesAreSGCompliant

If enabled, the plugin tries to check and validate whether the default for classes such
as GameMode, GameInstance, etc. are indeed SenseGlove classes or SenseGlove-
derived classes. If not, it attempts to set them. If you don't like this behavior for
whatever reason, consider disabling this option.

By default, this option is disabled.

Caution

Due to the current initialization mechanism, setting the default classes might
occasionally fail. Therefore, it's essential to verify that the default classes have
been correctly set. You can do this by checking the following sections in the
project settings:

Project Settings > Project > Maps & Modes > Default Modes > Default

GameMode

Project Settings > Project > Maps & Modes > Default Modes > Selected

GameMode > Default Pawn Class

Project Settings > Project > Maps & Modes > Default Modes > Selected

GameMode > Player Controller Class

The SenseGlove Unreal Engine Handbook

165 / 365

Project Settings > Project > Maps & Modes > Game Instance > Game

Instance Class

Project Settings > Engine > General Settings > Default Classes >

Advanced > Game User Settings Class

For more information visit the SenseGlove default classes.

The SenseGlove Unreal Engine Handbook

166 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/

The Game User Settings
The Game User Settings control the behavior of the SenseGlove instance of
UGameUserSettings . The USGGameUserSettings class extends the functionality of
UGameUserSettings to provide enhanced customization options specifically for

applications that utilize the SenseGlove Unreal Engine Plugin.

The SenseGlove Unreal Engine Handbook

167 / 365

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings

The Hardware-benchmarking Settings
The settings in this section are utilized by the
USGGameUserSettings::SetEngineScalabilitySettings() method when the
Scalability parameter is set to ESGEngineScalabilitySettings::Auto . When the

engine scalability settings set to auto the graphics settings are determined by
running a hardware benchmark by calling the
UGameUserSettings::RunHardwareBenchmark() . The settings listed here are basically

the parameters passed to UGameUserSettings::RunHardwareBenchmark() .

WorkScale

The WorkScale parameter determines the intensity of the benchmark test. Higher
values result in more intensive testing, which can help achieve more accurate
scalability settings.

The default value is 10 .

CPUMultiplier

The CPUMultiplier parameter allows you to adjust the impact of CPU performance
on the benchmark results. Increasing this value will emphasize CPU performance
more heavily in determining scalability settings.

The SenseGlove Unreal Engine Handbook

168 / 365

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings/RunHardwareBenchmark

The default value is 1.0f .

GPUMultiplier

The GPUMultiplier parameter lets you modify the influence of GPU performance on
the benchmark outcomes. A higher value will increase the weight of GPU
performance in setting scalability.

The default value is 1.0f .

The SenseGlove Unreal Engine Handbook

169 / 365

The Tracking Settings
The tracking settings are primarily used by the SenseGlove Tracking module and
are divided into various subsections, each focusing on a specific aspect of tracking.
These subsections, along with the other settings directly provided by this section,
provide comprehensive control over the tracking functionalities. The subsections are
as follows:

The Glove-tracking Settings
The Hand-tracking Settings
The HMD-tracking Settings
The Wrist-tracking Settings

bFallbackToHandTrackingIfNoGloveDetected

Determines whether to fallback to hand-tracking, or not, when no SenseGlove device
is detected:

If disabled, only a real glove will be tracked.
If enabled, the plugin will fall back to hand-tracking when it's available and
supported by the HMD device.

Note

The SenseGlove Unreal Engine Handbook

170 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

Disabling this option hides the hand-tracking settings section, while enabling it
makes the hand-tracking settings visible.

Glove Tracking Settings

Provides the tracking settings related to SenseGlove devices.

Hand Tracking Settings

The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

HMD Tracking Settings

Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.

Wrist Tracking Settings

Provides the tracking settings applicable to wrist-tracking hardware.

The SenseGlove Unreal Engine Handbook

171 / 365

The Glove-tracking Settings
Provides the tracking settings related to SenseGlove devices.

GloveConnectivityCheckInterval

The interval in which the tracking module checks for glove connectivity.

The default is 16.666666f which means 60 times per second.

The SenseGlove Unreal Engine Handbook

172 / 365

The Hand-tracking Settings
The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

bUseMoreSpecificMotionSourceNames

If disabled, (the default) the motion sources for hand tracking will be of the form
[Left|Right][Keypoint] . If enabled, they will be of the form
HandTracking[Left|Right][Keypoint] . It is recommended to be enabled to avoid

collisions between motion sources from different device types.

The SenseGlove Unreal Engine Handbook

173 / 365

bSupportLegacyControllerMotionSources

If enabled, hand tracking supports the Left and Right legacy motion sources. If
disabled, it does not. It is recommended to be disabled unless you need legacy
compatibility in older unreal projects.

The SenseGlove Unreal Engine Handbook

174 / 365

The HMD-tracking Settings
Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.

ViveHMDDetectionPriority

Determines which VIVE HMD to prioritize for detection, as the current detection
mechanism cannot differentiate between the HTC VIVE Focus 3 and the HTC VIVE XR
Elite.

The SenseGlove Unreal Engine Handbook

175 / 365

The Wrist-tracking Settings
Provides the tracking settings applicable to wrist-tracking hardware.

TrackingHardware

Specifies the type of tracking hardware to use. If set to None , the plugin attempts at
HMD auto-detection to automatically specify a compatible tracking hardware. If set
to Custom , aby desired location and rotation can be specified.

At the moment the following hardware are supported:

Quest 2 Controllers
Quest 3 Controllers
Quest Pro Controllers
VIVE Focus 3 Wrist Trackers
VIVE Trackers

The SenseGlove Unreal Engine Handbook

176 / 365

Caution

HMD auto-detection is currently an experimental feature and may fail because
HMD vendors occasionally change the properties utilized by the plugin for HMD
detection. If you encounter issues, such as incorrect tracker offsets, it is
recommended to explicitly specify the tracking hardware.

Caution

Due to highly experimental nature of the HMD auto-detection feature, the HTC
VIVE Focus 3 and HTC XR Elite cannot be distinguished from each other in the
current iteration. However, since the tracker devices and offsets for both
headsets are the same, this should not affect performance or functionality. The
order in which the HMD is detected can be specified through the HMD-tracker
setting ViveHMDDetectionPriority .

TrackingHardwareLocationOffsetLeftHand

Sets a custom location offset for left hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom .

The SenseGlove Unreal Engine Handbook

177 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority

TrackingHardwareLocationOffsetRightHand

Sets a custom location offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom .

TrackingHardwareRotationOffsetLeftHand

Sets a custom rotation offset for left hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom .

TrackingHardwareRotationOffsetRightHand

Sets a custom rotation offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom .

LeftHandMotionSource

Determines the motion source for the left hand. For Oculus HMDs, this is usually
Left , and for VIVE HMDs, it's typically LeftFoot .

Note

The SenseGlove Unreal Engine Handbook

178 / 365

For VIVE devices using SteamVR, the motion source hardware for the left hand
can be specified by the user through the SteamVR app.

RightHandMotionSource

Determines the motion source for the right hand. For Oculus HMDs, this is usually
Right , and for VIVE HMDs, it's typically RightFoot .

Note

For VIVE devices using SteamVR, the motion source hardware for the right hand
can be specified by the user through the SteamVR app.

DebuggingSettings

Provides debugging options for visually debugging the wrist tracker.

Overriding the Wrist-tracking Settings from the Wrist
Tracker Component

It's possible to override some of the wrist tracker settings through the details panel
of any specific Wrist Tracker Component. When overriden by enabling the
SenseGlove > Wrist Tracking Settings Override > Override Plugin Settings option

inside the details panel, these settings take precedence over the plugin's global
settings.

The SenseGlove Unreal Engine Handbook

179 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html

The SenseGlove Unreal Engine Handbook

180 / 365

The Wrist-tracking Debugging Settings
Provides debugging options for visually debugging the wrist tracker.

The SenseGlove Unreal Engine Handbook

181 / 365

bDrawDebugWristTracker

If enabled, visualizes the debug wrist trackers where possible.

DebugWristTrackerSettings

Visible and valid only if bDrawDebugGizmo is enabled.

The SenseGlove Unreal Engine Handbook

182 / 365

The Virtual Hand Settings
The Virtual Hand Settings are utilized by various SenseGlove modules such as Debug ,
Editor , Tracking , and the main module. These settings are divided into several

subsections, each focusing on a specific aspect of the virtual hand functionality.
Together with the settings provided directly in this section, they offer comprehensive
control over any system or component that utilizes the virtual hand. The subsections
are as follows:

The Animation Settings
The Debugging Settings
The Grab Settings
The Haptics Settings
The Mesh Settings
The Touch Settings

bVisibleWhenHandDataUnavailable

Used by the Virtual Hand Component to determine its visibility when no hand data,
either from a SenseGlove or hand-tracking, is available. If enabled, the virtual hand
mesh remains visible even when no data is available. By default, this setting is

The SenseGlove Unreal Engine Handbook

183 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html

disabled, providing users of the simulation with a clear indicator that no hand data is
currently available.

Animation Settings

Controls how the virtual hand model is animated by the animation system.

Debugging Settings

Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.

Grab Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The SGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

Haptics Settings

Utilized by the haptics system.

The SenseGlove Unreal Engine Handbook

184 / 365

Mesh Settings

Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

Touch Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The SGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

Overriding the Virtual Hand Settings from the Wrist
Tracker Component

It's possible to override some of the virtual hand settings through the details panel
of any specific Virtual Hand Component. When overriden by enabling the SenseGlove
> Virtual Hand Settings Override > Override Plugin Settings option inside the
details panel, these settings take precedence over the plugin's global settings.

The SenseGlove Unreal Engine Handbook

185 / 365

The SenseGlove Unreal Engine Handbook

186 / 365

The Virtual Hand Animation Settings
Controls how the virtual hand model is animated by the animation system.

AnimationBoneRotationCorrectionOffset

Specifies the offset to apply to each bone's rotation when translating hand pose data
to the virtual hand bones. This is useful if the virtual hand mesh was imported with
an initial rotation. For example, the virtual hand model shipped with Unreal Engine's
VRTemplate typically has an initial 90.0f degrees rotation on the Yaw axis. By
default, this option has been set up with the Unreal Engine's VRTemplate virtual
hand model in mind.

bShouldAnimationApplyBoneLocation

When enabled, the animation system applies the joint locations to the current virtual
hand mesh bones in addition to the joint rotation. Otherwise, only the joint rotations
are applied, and joint locations are ignored, leaving the bone locations untouched on
the virtual hand mesh when animating it. Enabling this option typically improves the
virtual hand animation. By default, this option is enabled.

The SenseGlove Unreal Engine Handbook

187 / 365

The Virtual Hand Debugging Settings
Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.

bDrawDebugVirtualHand

If enabled, visualizes the debug virtual hand where possible.

DrawingMode

Determines the virtual hand drawing mode. If set to CubicJoints , for every joint a
debug cube will be drawn. If set to GizmoJoints , for every joint a debug gizmo will be
drawn.

The SenseGlove Unreal Engine Handbook

188 / 365

DebugCubicHandSettings

Visible and valid only if bDrawDebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode::CubicJoints .

DebugGizmoHandSettings

Visible and valid only if bDrawDebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode::GizmoJoints .

The SenseGlove Unreal Engine Handbook

189 / 365

The SenseGlove Unreal Engine Handbook

190 / 365

The Virtual Hand Grab Settings
Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The SGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

GrabAttachPointSocketName

The default socket name for the grab attach point, usually located at the palm of the
hand.

The SenseGlove Unreal Engine Handbook

191 / 365

GrabAttachPointSocketTransform

The default socket transform (location, rotation, scale) for the grab attach point,
usually located at the palm of the hand.

DefaultColliderSize

The default collider size for the fingers' grab colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's grab collider, usually located at the
tip of the thumb finger.

IndexColliderSocketName

The default socket name for the index finger's grab collider, usually located at the tip
of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's grab collider, usually located at the
tip of the middle finger.

The SenseGlove Unreal Engine Handbook

192 / 365

The Virtual Hand Haptics Settings
Utilized by the haptics system.

bAutoStopAllHapticsOnEndPlay

Forces all haptics to stop automatically on the EndPlay event. This is useful for
situations where the simulation has ended, but ongoing haptic feedback might
remain active on the glove indefinitely. By default, this setting is enabled.

The SenseGlove Unreal Engine Handbook

193 / 365

The Virtual Hand Mesh Settings
Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

LeftHandReferenceMesh
The virtual hand model for the left hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FXRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh

The SenseGlove Unreal Engine Handbook

194 / 365

compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints

data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

RightHandReferenceMesh
The virtual hand model for the right hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FXRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh
compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints

data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

The SenseGlove Unreal Engine Handbook

195 / 365

DistalPhalangesLengthSettings
The length of distal phalanges that cannot be retrieved from any virtual hand mesh
compliant with the Epic standard rig. Also, the SenseGlove Hand Pose format does
not provide these. This is used by SenseGlove Tracking module to calculate an
FXRMotionControllerData the all 26 joints. The values you specify here depend on

the shape of the virtual hand mesh and the defaults are approximated for the virtual
hand model shipped with the Unreal Engine VRTemplate.

RootBoneRotationCorrection

Used mostly by the SenseGlove Tracking module and SGPawn to offset for any initial
rotation during the virtual hand mesh import process. This is the case for example
with the virtual hand model shipped with Unreal Engine's VRTemplate, which
typically has an initial -90.0f degrees rotation on the Yaw axis. By default, this
option has been set up with the Unreal Engine's VRTemplate virtual hand model in
mind.

LeftHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

RightHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

The SenseGlove Unreal Engine Handbook

196 / 365

LeftHandBoneNames

Read-only and for internal use only.

RightHandBoneNames

Read-only and for internal use only.

DefaultLeftHandMeshPath

Read-only and for internal use only.

DefaultLeftHandMeshPathOnly

Read-only and for internal use only.

DefaultRightHandMeshPath

Read-only and for internal use only.

DefaultRightHandMeshPathOnly

Read-only and for internal use only.

The SenseGlove Unreal Engine Handbook

197 / 365

The Virtual Hand Touch Settings
Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The SGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

DefaultColliderSize

The default collider size for the fingers' touch colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's touch collider, usually located at the
tip of the thumb finger.

The SenseGlove Unreal Engine Handbook

198 / 365

IndexColliderSocketName

The default socket name for the index finger's touch collider, usually located at the
tip of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's touch collider, usually located at the
tip of the middle finger.

RingColliderSocketName

The default socket name for the ring finger's touch collider, usually located at the tip
of the ring finger.

PinkyColliderSocketName

The default socket name for the pinky finger's touch collider, usually located at the
tip of the pinky finger.

The SenseGlove Unreal Engine Handbook

199 / 365

Overriding The Plugin Settings
The override system allows you to customize and override the global settings for the
SenseGlove Unreal Engine Plugin through specific subcomponents where applicable.
This feature enables more precise control over the behavior of individual
components within your project.

The SenseGlove Virtual Hand Component

The Virtual Hand Component provides the ability to override certain aspects of the
global plugin settings, allowing for tailored interactions and behaviors specific to
virtual hands. For more details, refer to the Virtual Hand Settings section.

The SenseGlove Wrist Tracker Component

The Wrist Tracker Component enables overriding of specific global plugin settings,
providing flexibility in wrist tracking configurations. For additional information, see
the Wrist-tracker Settings section.

The SenseGlove Unreal Engine Handbook

200 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/#overriding-the-virtual-hand-settings-from-the-virtual-hand-component
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/#overriding-the-wrist-tracking-settings-from-the-wrist-tracker-component

The SenseGlove Console Commands
The SenseGlove Unreal Engine Plugin offers a variety of utility console commands to
enhance your development experience.

Important

To ensure the SenseGlove console commands are registered and recognized by
Unreal Engine, set the default Game Instance class to SGGameInstance or a
subclass of it. This can be done through: Project Settings > Project > Maps &
Modes > Game Instance > Game Instance Class . Failing to do so will result in the
error: Command not recognized: SG_* in the logs. For more details, refer to
SGGameInstance .

SGGameUserSettings Console Commands

Caution

Before running any of the following console commands, ensure that the default
Game User Settings class is set to SGGameUserSettings or a subclass of it. This
can be configured via: Project Settings > Engine > General Settings > Default
Classes > Advanced > Game User Settings Class . Failure to set this correctly will
cause your simulation or editor to crash upon calling any of the following
console commands. For more information, refer to SGGameUserSettings .

SG_GetEngineScalabilitySettings

This console command prints the current Engine Scalability Settings to the logs.

The SenseGlove Unreal Engine Handbook

201 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

SG_SetEngineScalabilitySettings

This console command sets the Engine Scalability Settings for both the current game
and the editor. It accepts a Scalability parameter with the following valid values:

Low

Medium

High

Epic

Cinematic

Auto

Note

The Auto option is used for benchmarking purposes. It will adjust the engine
scalability settings to one of the other levels based on the benchmarking
results.

The SenseGlove Unreal Engine Handbook

202 / 365

Deploying to Android (Standalone)
Epic Games provides official documentation for setting up Unreal projects targeting
Android:

Setting Up Android SDK and NDK for Unreal
Android Quick Start

Here are a few important notes to consider:

Since SenseGlove provides native libraries built for Android, it’s crucial to
consult the Platform Support Matrix before deciding to deploy your project to
Android.
Currently, all third-party native libraries are built against Android NDK API Level
29 .

On Meta Quest devices, building against Android SDK API Level 29 or 32 has
been tested and is supported.
A video tutorial on deploying to Oculus Quest devices and Android is also
available.

SenseGlove UE Tutorial 06 | Deploying to Quest 2 and AndroSenseGlove UE Tutorial 06 | Deploying to Quest 2 and Andro……

Caution

The SenseGlove Unreal Engine Handbook

203 / 365

https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-android-sdk-and-ndk-for-unreal
https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-unreal-engine-projects-for-android-development
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://youtu.be/zU8Nf4ssOO0
https://www.youtube.com/watch?v=zU8Nf4ssOO0

As noted in the v2.1.0 release changelog, since this release enabling the Meta XR
plugin, —and potentially the VIVE OpenXR plugin— alongside the SenseGlove
Unreal Engine Plugin in the same project will disrupt the OpenXR functionality
provided by the SenseGlove Unreal Engine Plugin, rendering it unusable.

Although the SenseGlove OpenXR implementation is fully compatible with the

IOpenXRHMD interface and the FOpenXRHMD XRTrackingSystem, it is not

compatible with the FOculusXRHMD backend provided by the Meta XR plugin.

The same issue likely applies to the VIVE OpenXR plugin. So, if these

plugins are enabled in your project, the SenseGlove OpenXR will not

function as intended, effectively breaking the plugin's functionality. It

seems these plugins are necessary in order to make the fallback to the

hand-tracking feature work on Android. While we may add support and

compatibility with Meta XR and VIVE OpenXR plugins in the future, for the

time being, if your project requires these plugins, we advise continuing

with the v2.0.x release of the SenseGlove Unreal Engine plugin until this

issue is addressed.

This also means that although the SenseGlove Unreal Engine Plugin is able to
produce FXRMotionControllerData for SenseGlove devices just fine, the hand-
tracking on Android won't work. So, the fallback to hand-tracking mechanism on
Android is broken at the moment.

The SenseGlove Unreal Engine Handbook

204 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

Upgrade Guide
The transition from v2.0.x to v2.1.x introduces numerous changes, including
several breaking changes. The effort required to upgrade your project will vary
depending on its complexity and which features of the SenseGlove Unreal Engine
Project you are using. However, if you are working with a simple Blueprint project like
SGBasicDemo, the upgrade process is quite straightforward. We successfully
upgraded SGBasicDemo to SGBasicDemo-OpenXR by following the procedure
outlined below.

These are the notable changes that might affect your project:

The SenseGlove Virtual Hand and Wrist Tracker components no longer rely on
the SenseGlove Hand Pose data from the underlying SenseGlove API. Instead,
they use FXRMotionControllerData .
The virtual hand animation system has been revamped to use
FXRMotionControllerData and no longer relies on SenseGlove Hand Angles. This

means the virtual hand meshes are animated using world space transforms
instead of parent bone space transforms.
The Allbreaker virtual hand meshes have been removed and are no longer
supported as they are incompatible with the new OpenXR tracking and
animation system.

Caution

Please consult the changelog before upgrading your project to see if any change
affects or breaks your current project.

Note

For upgrading older versions of the plugin to v2.0.0 , a YouTube tutorial is
available.

The SenseGlove Unreal Engine Handbook

205 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/VbWfoep-Hsg

SGBasicDemo v2: upgrading your projects to the SenseGlovSGBasicDemo v2: upgrading your projects to the SenseGlov……

1. Remove the existing Plugins/SenseGlove folder from your project.

2. Obtain the latest v2.1.x version of the plugin either from the Epic Games
Launcher or Microsoft Azure DevOps Repositories and place it in the
Plugins/SenseGlove folder that you've just removed.

3. It might be best to clean up and remove the following folders from your project
before generating the project files or attempting to open your project with the
Unreal Editor. This might prevent a certain class of build issues:

4. Build your project using your favorite IDE if it's a C++ project, or open your
project's .uproject file with the Unreal Editor and wait for the Editor to build
the necessary binaries and open the project.

5. Remove the Allbreaker virtual hand meshes if you are using them, as they are
no longer compatible with the new animation system.

6. Import and set up a set of compatible virtual hand meshes such as the
VRTemplate virtual hand meshes, and configure the materials, rigid bodies, and

- Binaries
- Intermediate
- Saved

The SenseGlove Unreal Engine Handbook

206 / 365

https://www.youtube.com/watch?v=VbWfoep-Hsg
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/

the SenseGlove Grab and Touch Sockets using the SenseGlove Sockets Editor.

7. Set up the SGPawn to use the new virtual hand meshes for the HandLeft ,
HandRight , RealHandLeft , and RealHandRight components.

8. Adjust the Virtual Hand Mesh Settings and ensure the Left Hand Reference
Mesh and Right Hand Reference Mesh are set correctly.

9. Check and adjust the Virtual Hand Animation Settings as needed.

10. You might also want to set up the Wrist Tracking Hardware to use the new
experimental HMD auto-detection feature. This allows the plugin to
automatically configure the wrist tracking hardware at runtime, rather than
limiting your builds to a specific HMD.

11. Set up the SGGameInstance and SGGameUserSettings if you want to use the new
SenseGlove console commands or take advantage of the Engine Scalability
Settings to achieve higher framerates in your project.

12. Additionally, the latest release introduces the ability to use hand-tracking as an
alternative to SenseGlove hardware—albeit without haptic feedback—for rapid
development and testing. It's also recommended to enable the Fallback to
HandTracking if No Glove Detected feature to seamlessly switch to hand-
tracking when a glove isn't connected.

13. If all steps have been followed correctly, your project should now be fully
compatible with the new plugin release.

The SenseGlove Unreal Engine Handbook

207 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/#setting-up-the-senseglove-grab-and-touch-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html

Optimizing Your Project for Higher FPS
Enhancing the performance and framerate of Unreal Engine VR applications,
whether running standalone or streaming from a PC, can sometimes be challenging
depending on the nature of your project. This guide will walk you through generic
strategies that can significantly boost your project's performance and framerate
with minimal effort.

Meta Quest Link Advanced Graphics Preferences

When streaming from a PC to Meta Quest devices, the default refresh rate is set at
72 Hz . However, you can increase this to 120 Hz , which not only enhances the

refresh rate but also reduces the rendering resolution, potentially improving
performance. Follow these steps to make the adjustment:

1. Open the Meta Quest Link app and navigate to the Devices tab.

The SenseGlove Unreal Engine Handbook

208 / 365

2. Choose the device for which you would like to tweak the refresh rate.

The SenseGlove Unreal Engine Handbook

209 / 365

3. In the device settings, scroll down to the Advanced section and select Graphics
Preferences .

The SenseGlove Unreal Engine Handbook

210 / 365

4. Choose your desired refresh rate. In this case select a refresh rate of 120 Hz .
After making your selection, click OK , and the Meta Quest Link app will restart
to apply the changes.

The SenseGlove Unreal Engine Handbook

211 / 365

5. Once the Meta Quest Link app restarts, go back to the Devices tab, select your
device, and confirm the refresh rate setting under Advanced > Graphics
Preferences .

The SenseGlove Unreal Engine Handbook

212 / 365

6. Now, open your Unreal Engine project and navigate to Project Settings .
Under Engine > General Settings > Framerate , you can fine-tune and
experiment with the framerate settings to match your project's requirements.

The SenseGlove Unreal Engine Handbook

213 / 365

Game User Settings and Engine Scalability Settings

Unreal Engine offers predefined graphics quality profiles known as Engine Scalability
Settings, which can be easily adjusted to optimize performance. These settings can
be modified directly within the Unreal Editor through the Settings menu on the
toolbar or dynamically at runtime using code. Importantly, these settings are
universal, meaning changes made in the Unreal Editor will apply to the game when
run in PIE (Play In Editor) mode, and settings adjusted via code will also affect the
editor itself.

The SenseGlove Unreal Engine Handbook

214 / 365

Note

The SenseGlove Unreal Engine Plugin includes specialized console commands
that allow you to switch between different Engine Scalability Settings on the fly.
Please note that these commands require you to set up SGGameInstance and
SGGameUserSettings .

In order to switch between various Engine Scalability Settings, you can use the Get
Game User Settings Blueprint function and then cast it to SGGameInstance .

The SenseGlove Unreal Engine Handbook

215 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

Important

Unreal Engine's default Blueprint functions only allow you to set Engine
Scalability Settings to Low or Epic . To access the full range of settings,
SGGameUserSettings extends Blueprint access to all Engine Scalability Settings

and includes hardware benchmarking to detect the optimal settings. Therefore,
it's essential to make SGGameUserSettings or a subclass of it the default Game
User Settings class to utilize all these features.

The SenseGlove Unreal Engine Handbook

216 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The following Blueprint code from the SGBasicDemo-OpenXR example scene
demonstrates how to bind numeric keys 1 to 5 to set various Engine Scalability
Settings, and key 0 to utilize hardware benchmarking to determine the optimal
Engine Scalability Settings:

0 : Use hardware-benchmarking to determine the optimal Engine Scalability
Settings.
1 : Set Engine Scalability Settings to Low .
2 : Set Engine Scalability Settings to Medium .
3 : Set Engine Scalability Settings to High .
4 : Set Engine Scalability Settings to Epic .
5 : Set Engine Scalability Settings to Cinematic .

The SenseGlove Unreal Engine Handbook

217 / 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

Tip

The SGBasicDemo-OpenXR includes an example 3D widget actor that displays
the current FPS and Engine Scalability Settings. This widget can be placed within
a VR scene and is located in All > Content > Blueprints > UI >
BP_FPS3DWidget . The underlying UMG widget can be found at All > Content >
Blueprints > UI > WB_FPS within the Content Browser for the SGBasicDemo-
OpenXR example scene.

The SenseGlove Unreal Engine Handbook

218 / 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

Optimizing Unreal Projects for Mobile

We have the SGBasicDemo-OpenXR project, which has been optimized for mobile.
You can explore the project configuration by reviewing the settings inside the
Config folder and compare them with your own project settings. In addition, here

are some crucial guidelines and settings that you may want to adjust for further
optimization:

General Rendering Settings

Forward Shading: Enable Forward Shading for better performance. It’s more
efficient on mobile platforms.

The SenseGlove Unreal Engine Handbook

219 / 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

Mobile HDR: Disable this setting. Mobile HDR can significantly affect performance,
especially on lower-end devices.

The SenseGlove Unreal Engine Handbook

220 / 365

Instanced Stereo: Enable this setting. It is a rendering technique used in Unreal
Engine primarily for virtual reality (VR) applications. Its main purpose is to optimize
the rendering process when creating VR experiences by reducing the workload
associated with rendering two slightly different images for each eye.

The SenseGlove Unreal Engine Handbook

221 / 365

Mobile Multi-View: Enable this setting. It is a rendering feature in Unreal Engine
designed to optimize the performance of Virtual Reality (VR) applications on mobile
devices, particularly when using VR platforms like Google Daydream or Samsung
Gear VR. It is similar in concept to Instanced Stereo, but specifically optimized for
mobile hardware.

Mobile Anti-Aliasing Method: Use FXAA (Fast Approximate Anti-Aliasing) or MSAA
(Multisample Anti-Aliasing) . MSAA is often preferred for mobile as it gives better
visual quality without a huge performance hit.

The SenseGlove Unreal Engine Handbook

222 / 365

Reflection Capture Resolution: Reduce this value (e.g., 128 or 256) to decrease the
memory usage.

The SenseGlove Unreal Engine Handbook

223 / 365

Texture Settings

Enable virtual texture support: Disable this setting.

Texture Streaming: Enable texture streaming to ensure textures load progressively,
which helps in reducing memory usage.

The SenseGlove Unreal Engine Handbook

224 / 365

Texture Quality: Lower the overall texture quality to Medium or Low depending on
the target device capabilities.

Texture Compression: Use ASTC compression for Android to ensure the textures
are optimized for mobile devices.

Lighting Settings

Use Static Lighting: Prefer static lighting over dynamic lighting for better
performance.

Lightmap Resolution: Use a lower lightmap resolution (e.g., 32 or 64) for mobile to
reduce memory usage.

Dynamic Shadows: Disable or minimize the use of dynamic shadows. If required,
use CSM (Cascaded Shadow Maps) with low resolution and distance.

Distance Field Shadows/Ambient Occlusion: Disable these features as they are
costly on mobile platforms.

The SenseGlove Unreal Engine Handbook

225 / 365

Post-Processing Settings

Bloom, Lens Flares, and Auto Exposure: Minimize or disable these effects as they
can be performance-intensive.

The SenseGlove Unreal Engine Handbook

226 / 365

Screen Space Reflections: Disable this setting as it is costly in terms of performance
on mobile devices.

Motion Blur: Disable this feature to save on processing power.

The SenseGlove Unreal Engine Handbook

227 / 365

Materials and Shaders

Material Complexity: Use simple materials with few instructions and limit the
number of textures and shader nodes.

Specular Highlights: Consider reducing or disabling specular highlights on materials
to save on performance.

LOD (Level of Detail) Models: Ensure that LODs are set up correctly for all models,
with appropriate reduction in polygon count for distant objects.

Level of Detail (LOD) Settings

Mesh LODs: Configure LODs for all meshes to reduce polygon count at distances.

Screen Size: Adjust screen size settings for LODs to ensure they switch at
appropriate distances for mobile screens.

Engine Scalability Settings

Resolution Scale: Lower the resolution scale (e.g., 70% or 80%) to improve
performance while maintaining visual quality.

View Distance: Set to Medium or Low to reduce the amount of detail rendered at
long distances.

Shadows: Set to Low or Off for better performance.

Textures: Set to Medium or Low depending on the device’s capabilities.

Effects: Set to Low to reduce the complexity of visual effects.

Note

See Game User Settings and Engine Scalability Settings for more details.

The SenseGlove Unreal Engine Handbook

228 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/index.html#game-user-settings-and-engine-scalability-settings

Physics and Collision

Physics Simulation: Limit the use of physics simulation where possible, as it can be
expensive on mobile devices.

Collision Complexity: Use simple collision meshes instead of complex ones to
improve performance.

Audio Settings

Sample Rate: Lower the sample rate to reduce memory usage and processing load.

Number of Audio Channels: Limit the number of audio channels used in the project
to reduce CPU usage.

Rendering API

Vulkan vs OpenGL ES: Test your project with both Vulkan and OpenGL ES to see
which provides better performance on your target devices. Vulkan often offers
better performance but may not be supported on all devices.

Culling

Frustum Culling: Ensure that frustum culling is enabled to avoid rendering objects
outside of the camera’s view.

Occlusion Culling: Enable occlusion culling to avoid rendering objects that are not
visible due to being blocked by other objects.

The SenseGlove Unreal Engine Handbook

229 / 365

The SenseGlove Unreal Engine Handbook

230 / 365

Safe and Reliable Glove Access in
Blueprint
Since the Blueprint API uses the underlying C++ API to access the SenseGlove
hardware, it often has to deal with C++ pointers. Those who are familiar with C++ and
in particular with the Unreal Engine UObject Garbage Collection System are aware
that:

As a general rule of thumb, a pointer should be validated before dereferenced,
meaning before accessing the pointer a NULL check should be performed,
otherwise if the pointer is NULL the program is going to crash upon access.
Unreal implements a garbage collection scheme whereby UObjects that are no
longer referenced or have been explicitly flagged for destruction will be cleaned
up at regular intervals. The engine builds a reference graph to determine which
UObjects are still in use and which ones are orphaned. The ones that are
orphaned will be evaluated to NULL on the next GC cycle and their allocated
memory will be released. Hence, NULL checks on UObjects are always
mandatory.

Glove objects inside the SenseGlove Unreal Engine Plugin, utilize the UObject system,
and since communication for Nova gloves happens over SenseCom and the
Bluetooth protocol, and also the gloves are running on battery, there's always the
possibility for a glove variable to become NULL and therefore invalidated when the
glove hardware for any reason is not accessible.

The recommended way to work with a glove instance without any performance
penalty, and in a safe manner in Blueprint is:

1. Cache the glove instance inside a global variable if it passes certain tests so that
you don't have to perform all those checks on every access. This usually could
happen inside the Tick function.

2. The first check inside the Tick function is to check whether the cached glove
instance is valid. If it's valid we continue to the next step, if not, we ask the API
for a new glove instance.

The SenseGlove Unreal Engine Handbook

231 / 365

3. If the glove instance is valid, then it's best to perform a connectivity check next.
If the glove is connected we don't have to do anything else in regards to
obtaining a new glove instance and caching it. If however the glove is not
connected, we might ask the API for a new glove instance.

4. If any of the above steps fail, then we can actually ask the API for a new glove
instance, and if the result is successful we're going to cache the new glove
instance.

5. From here on, anywhere else inside your code, whenever you need to access
the glove data or perform an operation like for example sending or stopping
haptics you always perform a validity check and only proceed when the glove
instance is valid. This way you will always ensure you are accessing the glove
instances in a safe and reliable manner, thus avoiding any unexpected
behaviors or crashes.

The following Blueprint examples implement the above approach and also
demonstrate good and bad glove instance accesses:

The SenseGlove Unreal Engine Handbook

232 / 365

OpenXR
The SenseGlove Unreal Engine Plugin has provided OpenXR-compatible hand
tracking by implementing XR_EXT_hand_tracking since v2.1.0 .

Typically a user does not need to know anything about OpenXR to use the plugin, so
this section of the handbook is for advanced users who are looking for a way to
directly consume the OpenXR data coming directly from either a SenseGlove device
or if enabled in the plugin settings from hand-tracking.

Since the SenseGlove Unreal Engine Plugin registers itself as an OpenXRHandTracking
motion controller device it becomes a hand-tracking provider for Unreal Engine, thus
the OpenXR data from SenseGlove could always be retrieved from the Unreal
Engine's IXTrackingSystem with one caveat. The caveat is if another OpenXR-
compatible hand-tracking plugin, e.g. Epic's own OpenXRHandTracking, is enabled
simultaneously it's not guaranteed that the FXRMotionControllerData and
FXRHandTrackingState structs retrieved from the
IXTrackingSystem::GetMotionControllerData() and
IXTrackingSystem::GetHandTrackingState() methods are coming from SenseGlove,

as these methods return the first hand-tracking plugin they could find. Thus,
SenseGlove provides its own implementation of GetMotionControllerData() and
GetHandTrackingState() which guarantee the retrieved FXRMotionControllerData or
FXRHandTrackingState are coming from the SenseGlove Unreal Engine Plugin; and

this is the preferred way to that.

Note

In order to retrieve the latest FXRMotionControllerState available, The
SenseGlove Unreal Engine Plugin provides an alternative implementation for
IXTrackingSystem::GetMotionControllerState() as well . However, since this

method does not rely on the OpenXRHandTracking provider, it may become
redundant. As a result, we might consider removing this functionality in future
updates in favor of the one that Unreal Engine provides.

Important

The SenseGlove Unreal Engine Handbook

233 / 365

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

In the next sections we'll see:

How we can directly consume the FXRMotionControllerData on UE 5.2 , 5.3 ,
5.4 , and 5.5 to draw and animate debug virtual hands in both Blueprint and

C++.

How we can directly consume the FXRHandTrackingState on UE 5.5 to draw
and animate debug virtual hands in both Blueprint and C++.

The SenseGlove Unreal Engine Handbook

234 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html

Consuming FXRHandTrackingState

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand-

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FXRHandTrackingState declaration inside the Unreal
Engine's HeadMountedDisplay module at
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]

(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He

adMountedDisplay/Public/HeadMountedDisplayTypes.h) , figuring out the data
structure might not seem very straightforward:

The SenseGlove Unreal Engine Handbook

235 / 365

Which on the Blueprint side it looks like this:

USTRUCT(BlueprintType)
struct FXRHandTrackingState
{
 GENERATED_USTRUCT_BODY();

 // The state is valid if poses have ever been provided.
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 bool bValid = false;
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FName DeviceName;
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FGuid ApplicationInstanceID;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 EXRSpaceType XRSpaceType = EXRSpaceType::UnrealWorldSpace;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 EControllerHand Hand = EControllerHand::Left;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<FVector> HandKeyLocations;

 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<FQuat> HandKeyRotations;

 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<float> HandKeyRadii;
};

The SenseGlove Unreal Engine Handbook

236 / 365

But, fear not, we've got you covered!

FXRHandTrackingState in Unreal Engine

FXRHandTrackingState is a structure in Unreal Engine designed to hold detailed
information about the state of a hand-tracking device at a given moment. This
structure is essential for handling hand-tracking inputs in virtual reality (VR)
applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

The SenseGlove Unreal Engine Handbook

237 / 365

Structure Members of FXRHandTrackingState

bValid

Description: A boolean flag indicating whether the data is valid or not.
Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

DeviceName

Type: FName
Description: The name of the device.
Usage: Identifies which device the data is coming from, useful when
multiple devices are in use.

ApplicationInstanceID

Type: FString
Description: A unique identifier for the application instance.
Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

XRSpaceType

Type: EXRSpaceType
Description: Enum specifying the type of XR space being used (e.g., unreal
world or tracking space).
Usage: Specifies the coordinate system the XR Device is tracking itself in.

Hand

Type: EControllerHand
Description: Enum indicating which hand is being tracked (left or right).
Usage: Helps identify whether the hand-tracking data pertains to the left
or right hand, essential for hand-specific actions or interactions.

TrackingStatus

Type: EXRTrackingStatus

The SenseGlove Unreal Engine Handbook

238 / 365

Description: Enum indicating the tracking status of the hand-tracking
device.
Usage: Shows whether the hand-tracking device is being tracked
accurately, with possible statuses like Tracked , NotTracked , etc.

HandKeyLocations

Type: TArray<FVector>
Description: An array of vectors representing key locations of the hand.
Usage: Provides detailed locations of key points on the hand, useful for
precise hand-tracking and interaction.

HandKeyRotations

Type: TArray<FQuat>
Description: An array of quaternions representing key rotations of the
hand.
Usage: Complements the hand key locations with rotational data,
ensuring accurate representation of hand movements.

HandKeyRadii

Type: TArray<float>
Description: An array of floats representing the radii of key points of the
hand.
Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

Organization of FXRHandTrackingState

The structure is organized to encapsulate all relevant data needed for hand-tracking
in a coherent and accessible manner. Boolean flag bValid provides quick checks on
the state of the controller data. Identifiers DeviceName and ApplicationInstanceID
ensure the correct association of data. Arrays HandKeyLocations , HandKeyRotations ,
and HandKeyRadii allow detailed hand-tracking, which is critical for immersive VR
experiences. Lastly, the tracking status TrackingStatus informs the system of the

The SenseGlove Unreal Engine Handbook

239 / 365

reliability of the data being processed and whether the hands are actively being
tracked or they are inactive at the moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeyLocations and HandKeyRotations fields of the FXRHandTrackingState struct.

Both HandKeyLocations and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT , etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT as EHandKeypointCount inside
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]

(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He

adMountedDisplay/Public/HeadMountedDisplayTypes.h) as follows:

The SenseGlove Unreal Engine Handbook

240 / 365

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html

So, getting the any joint's location or rotation is as easy as casting the enum value
and passing it as the array index.

/**
 * Transforms that are tracked on the hand.
 * Matches the enums from WMR to make it a direct mapping
 */
UENUM(BlueprintType)
enum class EHandKeypoint : uint8
{
 Palm,
 Wrist,
 ThumbMetacarpal,
 ThumbProximal,
 ThumbDistal,
 ThumbTip,
 IndexMetacarpal,
 IndexProximal,
 IndexIntermediate,
 IndexDistal,
 IndexTip,
 MiddleMetacarpal,
 MiddleProximal,
 MiddleIntermediate,
 MiddleDistal,
 MiddleTip,
 RingMetacarpal,
 RingProximal,
 RingIntermediate,
 RingDistal,
 RingTip,
 LittleMetacarpal,
 LittleProximal,
 LittleIntermediate,
 LittleDistal,
 LittleTip
};

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

The SenseGlove Unreal Engine Handbook

241 / 365

 FXRHandTrackingState HandTrackingState;
 const bool bGotHandTrackingState = FSGXRTracker::GetHandTrackingState(
 GetWorld(), EXRSpaceType::UnrealWorldSpace, EControllerHand::Left,
HandTrackingState);

 // Return if the struct data is invalid!
 if (!bGotHandTrackingState || !HandTrackingState.bValid)
 {
 return;
 }

 // Return if the device is not being tracked!
 if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)
 {
 return;
 }

 // Ensure that HandTrackingState.HandKeyLocations has the location data
 // for 26 joints!
 if (!ensureAlwaysMsgf(HandTrackingState.HandKeyLocations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyLocations count!")))
 {
 return;
 }

 // Ensure that HandTrackingState.HandKeyRotations has the rotation data
 // for 26 joints!
 if (!ensureAlwaysMsgf(HandTrackingState.HandKeyRotations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyRotations count!")))
 {
 return;
 }

 static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint::Palm);

 const FVector& PalmLocation{
 HandTrackingState.HandKeyLocations[PalmIndex]
 };
 const FRotator& PalmRotation{
 HandTrackingState.HandKeyRotations[PalmIndex].Rotator()
 };

The SenseGlove Unreal Engine Handbook

242 / 365

The equivalent Blueprint code for the above looks something like this:

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++ in the upcoming sections.

The SenseGlove Unreal Engine Handbook

243 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html

Consuming FXRHandTrackingState in
Blueprint

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRHandTrackingState section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

The SenseGlove Unreal Engine Handbook

244 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the

code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand .

The SenseGlove Unreal Engine Handbook

245 / 365

6. Inside this function's event graph add a Get Hand Tracking State node from
SenseGlove > Tracking > XR Tracker > Get Hand Tracking State .

The SenseGlove Unreal Engine Handbook

246 / 365

7. Then connect the functions Hand input parameter to the Get Hand Tracking
State 's Hand input and right-click on the OutHandTrackingState parameter and
use the Break XRHandTrackingState node to break the struct to it's fields.

The SenseGlove Unreal Engine Handbook

247 / 365

8. After this, we need to perform data validation by checking the return status of
the Get Hand Tracking State function and FXRHandTrackingState 's Valid field.
Then, we check if the hand-tracking device is being tracked and indeed coming
from a hand-tracking source. And, finally, we check whether we have the
positions and rotations for exactly 26 joints or not.

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FXRHandTrackingState to the

The SenseGlove Unreal Engine Handbook

248 / 365

DebugVirtualHand::Draw function! But, since the point of this tutorial is to learn
how to consume the FXRHandTrackingState we ignore the last option. Between
the debug cubes or gizmos, we are going to choose the gizmos since they
better represent the rotations than the cubes.

10. In the last step inside the Draw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions or Hand Key Rotations arrays from the FXRHandTrackingState struct.

The SenseGlove Unreal Engine Handbook

249 / 365

Since we made sure both arrays have 26 elements before we reached this
step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop or a For Loop to access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the Draw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two Draw functions
and the only difference between the two is that one accepts an FQuat and the
other a FRotator for its Rotation input parameter. In this case, we use the
FQuat variant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2 , as the default

value might be too thick for drawing a joint gizmo.

11. Well, now the full implementation for the Draw Hand function insde the VRPawn
should look something like this:

The SenseGlove Unreal Engine Handbook

250 / 365

12. Finally, go back to VRPawn 's event graph and the following code to the Tick
event. Basically what we do here is call our newly implemented Draw Hand
twice, once for each hand.

The SenseGlove Unreal Engine Handbook

251 / 365

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands
inside your VR simulation.

The SenseGlove Unreal Engine Handbook

252 / 365

Consuming FXRHandTrackingState in
C++

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRHandTrackingState section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

The SenseGlove Unreal Engine Handbook

253 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. From the Tools menu choose New C++ class... .

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

The SenseGlove Unreal Engine Handbook

254 / 365

6. Name the new pawn class DebugPawn .

The SenseGlove Unreal Engine Handbook

255 / 365

7. Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from

the File menu choose the Reparent Blueprint class.

9. In the new Reparent blueprint window choose DebugPawn as the new parent.

The SenseGlove Unreal Engine Handbook

256 / 365

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the ADebugPawn class has been set as the new
parent.

The SenseGlove Unreal Engine Handbook

257 / 365

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice , OpenXRHMD , SenseGloveBuildHacks , SenseGloveDebug ,
SenseGloveSettings , and SenseGloveTracking modules as either a private or

public dependency.

The SenseGlove Unreal Engine Handbook

258 / 365

12. Locate the C++ header and source file for the ADebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules
{
 public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)
 {
 PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

 PublicDependencyModuleNames.AddRange(new string[] { "Core",
"CoreUObject", "Engine", "InputCore" });

 PrivateDependencyModuleNames.AddRange(new string[]
 {
 "InputDevice",
 "OpenXRHMD",
 "SenseGloveBuildHacks",
 "SenseGloveDebug",
 "SenseGloveSettings",
 "SenseGloveTracking"
 });

 // Uncomment if you are using Slate UI
 // PrivateDependencyModuleNames.AddRange(new string[] { "Slate",
"SlateCore" });

 // Uncomment if you are using online features
 // PrivateDependencyModuleNames.Add("OnlineSubsystem");

 // To include OnlineSubsystemSteam, add it to the plugins section in
your uproject file with the Enabled attribute set to true
 }
}

The SenseGlove Unreal Engine Handbook

259 / 365

14. Modify the DebugPawn.cpp implementation file to look like this:

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"

#include "DebugPawn.generated.h"

UCLASS()
class VIRTUALHANDCPP_API ADebugPawn : public APawn
{
 GENERATED_BODY()

private:
 // The virtual hand drawing settings.
 UPROPERTY(EditDefaultsOnly, Category="DebugPawn",
 meta=(AllowPrivateAccess="false"))
 FSGDebugGizmoSettings HandDrawingSettings;

public:
 // Sets default values for this pawn's properties
 ADebugPawn();

protected:
 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

public:
 // Called every frame
 virtual void Tick(float DeltaTime) override;

 // Called to bind functionality to input
 virtual void SetupPlayerInputComponent(class UInputComponent*
PlayerInputComponent) override;

private:
 // The method responsible for drawing a virtual hand.
 void DrawHand(EControllerHand Hand) const;
};

The SenseGlove Unreal Engine Handbook

260 / 365

// Fill out your copyright notice in the Description page of Project
Settings.

#include "DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn::ADebugPawn()
{
 // Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
 PrimaryActorTick.bCanEverTick = true;

 // Set the default virtual hand drawing settings.
 HandDrawingSettings = FSGDebugGizmoSettings{
 1.0f,
 FColor{255, 0, 0, 255},
 FColor{0, 255, 0, 255},
 FColor{0, 0, 255, 255},
 false,
 1.1f,
 0,
 0.2f,
 };
}

// Called when the game starts or when spawned
void ADebugPawn::BeginPlay()
{
 Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);

 // Attempt at drawing the left/right virtual hands every frame.
 DrawHand(EControllerHand::Left);
 DrawHand(EControllerHand::Right);
}

// Called to bind functionality to input
void ADebugPawn::SetupPlayerInputComponent(UInputComponent*

The SenseGlove Unreal Engine Handbook

261 / 365

PlayerInputComponent)
{
 Super::SetupPlayerInputComponent(PlayerInputComponent);
}

void ADebugPawn::DrawHand(const EControllerHand Hand) const
{
 // Get the world and cache it, if it's null we return early.
 UWorld* World{GetWorld()};
 if (!IsValid(World))
 {
 return;
 }

 FXRHandTrackingState HandTrackingState;
 const bool bGotHandTrackingState = FSGXRTracker::GetHandTrackingState(
 World, EXRSpaceType::UnrealWorldSpace, Hand, HandTrackingState);

 // Return if the struct data is invalid!
 if (!bGotHandTrackingState || !HandTrackingState.bValid)
 {
 return;
 }

 // Return if the device is not being tracked!
 if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)
 {
 return;
 }

 // Ensure that HandTrackingState.HandKeyLocations has the location data
 // for 26 joints!
 if (!ensureAlwaysMsgf(HandTrackingState.HandKeyLocations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyLocations count!")))
 {
 return;
 }

 // Ensure that HandTrackingState.HandKeyRotations has the rotation data
 // for 26 joints!
 if (!ensureAlwaysMsgf(HandTrackingState.HandKeyRotations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyRotations count!")))
 {
 return;
 }

The SenseGlove Unreal Engine Handbook

262 / 365

15. Now, rebuild the source code and go back to the VRTemplateMap , then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

 // Iterate over the hand joint locations and rotations!
 for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)
 {
 const FVector& JointLocation{
 HandTrackingState.HandKeyLocations[JointIndex]
 };
 const FQuat& JointRotation{
 HandTrackingState.HandKeyRotations[JointIndex]
 };

 // Draw a single joint's gizmo!
 // Please note that we could alternatively:
 // Use FSGDebugCube::Draw() to draw a cube.
 // Or use the FSGDebugVirtualHand::Draw() method and pass the
 // HandTrackingState directly to draw the virtual hand
 // all at once without iterating the joints. But, that's not
 // goal of this tutorial.
 FSGDebugGizmo::Draw(World, JointLocation, JointRotation,
HandDrawingSettings);
 }
}

The SenseGlove Unreal Engine Handbook

263 / 365

The SenseGlove Unreal Engine Handbook

264 / 365

Consuming FXRMotionControllerData

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FXRMotionControllerData declaration inside the Unreal
Engine's HeadMountedDisplay module at
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]

(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He

adMountedDisplay/Public/HeadMountedDisplayTypes.h) , figuring out the data
structure might not seem very straightforward:

The SenseGlove Unreal Engine Handbook

265 / 365

USTRUCT(BlueprintType)
struct FXRMotionControllerData
{
 GENERATED_USTRUCT_BODY();

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 bool bValid = false;
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FName DeviceName;
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FGuid ApplicationInstanceID;
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 EXRVisualType DeviceVisualType = EXRVisualType::Controller;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 EControllerHand HandIndex = EControllerHand::Left;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

 // Vector representing an object being held in the player's hand
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FVector GripPosition = FVector(0.0f);
 // Quaternion representing an object being held in the player's hand
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FQuat GripRotation = FQuat(EForceInit::ForceInitToZero);

 // For handheld controllers, gives a vector for pointing at objects
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FVector AimPosition = FVector(0.0f);
 // For handheld controllers, gives a quaternion for pointing at objects
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FQuat AimRotation = FQuat(EForceInit::ForceInitToZero);

 // For handheld controllers, gives a vector for representing the hand
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FVector PalmPosition = FVector(0.0f);
 // For handheld controllers, gives a quaternion for representing the hand
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 FQuat PalmRotation = FQuat(EForceInit::ForceInitToZero);

 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<FVector> HandKeyPositions;
 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

The SenseGlove Unreal Engine Handbook

266 / 365

Which on the Blueprint side it looks like this:

But, fear not, we've got you covered!

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<FQuat> HandKeyRotations;
 // The indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).
 UPROPERTY(BlueprintReadOnly, Category = "XR")
 TArray<float> HandKeyRadii;

 UPROPERTY(BlueprintReadOnly, Category = "XR")
 bool bIsGrasped = false;
};

The SenseGlove Unreal Engine Handbook

267 / 365

FXRMotionControllerData in Unreal Engine

FXRMotionControllerData is a structure in Unreal Engine designed to hold detailed
information about the state of a motion controller device at a given moment. This
structure is essential for handling motion controller inputs in virtual reality (VR)
applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

Structure Members of FXRMotionControllerData

bValid

Description: A boolean flag indicating whether the data is valid or not.
Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

DeviceName

Type: FName
Description: The name of the device.
Usage: Identifies which motion controller device the data is coming from,
useful when multiple devices are in use.

ApplicationInstanceID

Type: FString
Description: A unique identifier for the application instance.
Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

DeviceVisualType

Type: EXRVisualType
Description: Enum specifying the visual type of the device (e.g., controller,
hand).
Usage: Used to differentiate between various motion controller devices or
hand-tracking representations for rendering and interaction purposes.

The SenseGlove Unreal Engine Handbook

268 / 365

HandIndex

Type: EControllerHand
Description: Enum indicating which hand is being tracked (left or right).
Usage: Helps identify whether the motion data pertains to the left or right
hand, essential for hand-specific actions or interactions.

TrackingStatus

Type: EXRTrackingStatus
Description: Enum indicating the tracking status of the motion controller.
Usage: Shows whether the controller is being tracked accurately, with
possible statuses like Tracked , NotTracked , etc.

GripPosition

Type: FVector
Description: The position of the grip in world coordinates.
Usage: Provides the 3D coordinates of the controller's grip, essential for
positioning the virtual representation of the controller.

GripRotation

Type: FQuat
Description: The rotation of the grip in world coordinates.
Usage: Provides the orientation of the controller's grip, allowing for
accurate rotation and alignment in the virtual space.

AimPosition

Type: FVector
Description: The position of the aim point in world coordinates.
Usage: Specifies where the controller is aiming, useful for aiming or
pointing actions.

AimRotation

Type: FQuat
Description: The rotation of the aim point in world coordinates.

The SenseGlove Unreal Engine Handbook

269 / 365

Usage: Determines the orientation of the aim direction, important for
actions like shooting or selecting objects in VR.

PalmPosition

Type: FVector
Description: The position of the palm in world coordinates.
Usage: Provides the 3D location of the palm, important for determining
hand gestures or interactions in VR.

PalmRotation

Type: FQuat
Description: The rotation of the palm in world coordinates.
Usage: Defines the orientation of the palm, crucial for hand-based
interaction accuracy and realism in VR experiences.

HandKeyPositions

Type: TArray<FVector>
Description: An array of vectors representing key positions of the hand.
Usage: Provides detailed positions of key points on the hand, useful for
precise hand tracking and interaction.

HandKeyRotations

Type: TArray<FQuat>
Description: An array of quaternions representing key rotations of the
hand.
Usage: Complements the hand key positions with rotational data,
ensuring accurate representation of hand movements.

HandKeyRadii

Type: TArray<float>
Description: An array of floats representing the radii of key points of the
hand.
Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

The SenseGlove Unreal Engine Handbook

270 / 365

bIsGrasped

Type: bool
Description: A boolean indicating whether the controller is currently
grasping an object.
Usage: Determines if the user is holding something, affecting interactions
and animations.

Organization of FXRMotionControllerData

The structure is organized to encapsulate all relevant data needed for hand and
motion controller tracking in a coherent and accessible manner. Boolean flags
bValid and bIsGrasped provide quick checks on the state of the controller data.

Identifiers DeviceName and ApplicationInstanceID ensure the correct association of
data. Positional and rotational data GripPosition , GripRotation , AimPosition , and
AimRotation offer precise tracking of the controller's movement. Arrays
HandKeyPositions , HandKeyRotations , and HandKeyRadii allow detailed hand

tracking, which is critical for immersive VR experiences. Lastly, the tracking status
TrackingStatus informs the system of the reliability of the data being processed and

whether the motion controller is actively being tracked or it's inactive at the
moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeyPositions and HandKeyRotations fields of the FXRMotionControllerData

struct.

Both HandKeyPositions and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT , etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT as EHandKeypointCount inside
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]

The SenseGlove Unreal Engine Handbook

271 / 365

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html

(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He

adMountedDisplay/Public/HeadMountedDisplayTypes.h) as follows:

So, getting the any joint's position or rotation is as easy as casting the enum value
and passing it as the array index.

/**
 * Transforms that are tracked on the hand.
 * Matches the enums from WMR to make it a direct mapping
 */
UENUM(BlueprintType)
enum class EHandKeypoint : uint8
{
 Palm,
 Wrist,
 ThumbMetacarpal,
 ThumbProximal,
 ThumbDistal,
 ThumbTip,
 IndexMetacarpal,
 IndexProximal,
 IndexIntermediate,
 IndexDistal,
 IndexTip,
 MiddleMetacarpal,
 MiddleProximal,
 MiddleIntermediate,
 MiddleDistal,
 MiddleTip,
 RingMetacarpal,
 RingProximal,
 RingIntermediate,
 RingDistal,
 RingTip,
 LittleMetacarpal,
 LittleProximal,
 LittleIntermediate,
 LittleDistal,
 LittleTip
};

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

The SenseGlove Unreal Engine Handbook

272 / 365

 FXRMotionControllerData MotionControllerData;
 const bool bGotMotionControllerData =
FSGXRTracker::GetMotionControllerData(
 GetWorld(), EControllerHand::Left, MotionControllerData);

 // Return if the struct data is invalid!
 if (!bGotMotionControllerData || !MotionControllerData.bValid)
 {
 return;
 }

 // Return if the device is not being tracked!
 if (MotionControllerData.TrackingStatus == ETrackingStatus::NotTracked)
 {
 return;
 }

 // Ensure that MotionControllerData.DeviceVisualType is a hand!
 if (!ensureAlwaysMsgf(MotionControllerData.DeviceVisualType
 == EXRVisualType::Hand,
 TEXT("Invalid DeviceVisualType type!")))
 {
 }

 // Ensure that MotionControllerData.HandKeyPositions has the position
data
 // for 26 joints!
 if (!ensureAlwaysMsgf(MotionControllerData.HandKeyPositions.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyPositions count!")))
 {
 return;
 }

 // Ensure that MotionControllerData.HandKeyRotations has the rotation
data
 // for 26 joints!
 if (!ensureAlwaysMsgf(MotionControllerData.HandKeyRotations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyRotations count!")))
 {
 return;
 }

 static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint::Palm);

The SenseGlove Unreal Engine Handbook

273 / 365

The equivalent Blueprint code for the above looks something like this:

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++ in the upcoming sections.

 const FVector& PalmPosition{
 MotionControllerData.HandKeyPositions[PalmIndex]
 };
 const FRotator& PalmRotation{
 MotionControllerData.HandKeyRotations[PalmIndex].Rotator()
 };

The SenseGlove Unreal Engine Handbook

274 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html

Consuming FXRMotionControllerData in
Blueprint

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRMotionControllerData section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

The SenseGlove Unreal Engine Handbook

275 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the

code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand .

The SenseGlove Unreal Engine Handbook

276 / 365

6. Inside this function's event graph add a Get Motion Controller Data node from
SenseGlove > Tracking > XR Tracker > Get Motion Controller Data .

The SenseGlove Unreal Engine Handbook

277 / 365

7. Then connect the functions Hand input parameter to the Get Motion
Controller Data 's Hand input and right-click on the OutMotionControllerData
parameter and use the Break XRMotionControllerData node to break the struct
to it's fields.

The SenseGlove Unreal Engine Handbook

278 / 365

8. After this, we need to perform data validation by checking the return status of
the Get Motion Controller Data function and FXRMotionControllerData 's
Valid field. Then, we check if the motion controller device is being tracked and

indeed coming from a hand-tracking source. And, finally, we check whether we
have the positions and rotations for exactly 26 joints or not.

The SenseGlove Unreal Engine Handbook

279 / 365

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FXRMotionControllerData to the
DebugVirtualHand::Draw function! But, since the point of this tutorial is to learn

how to consume the FXRMotionControllerData we ignore the last option.
Between the debug cubes or gizmos, we are going to choose the gizmos since
they better represent the rotations than the cubes.

The SenseGlove Unreal Engine Handbook

280 / 365

10. In the last step inside the Draw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions or Hand Key Rotations arrays from the FXRMotionControllerData
struct. Since we made sure both arrays have 26 elements before we reached
this step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop or a For Loop to access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the Draw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two Draw functions
and the only difference between the two is that one accepts an FQuat and the
other a FRotator for its Rotation input parameter. In this case, we use the
FQuat variant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2 , as the default

value might be too thick for drawing a joint gizmo.

The SenseGlove Unreal Engine Handbook

281 / 365

11. Well, now the full implementation for the Draw Hand function insde the VRPawn
should look something like this:

12. Finally, go back to VRPawn 's event graph and the following code to the Tick
event. Basically what we do here is call our newly implemented Draw Hand
twice, once for each hand.

The SenseGlove Unreal Engine Handbook

282 / 365

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands
inside your VR simulation.

The SenseGlove Unreal Engine Handbook

283 / 365

Consuming FXRMotionControllerData in
C++

Important

Unreal Engine versions 5.2 , 5.3 , and 5.4 are limited to
FXRMotionControllerData since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5 , it is recommended to utilize FXRHandTrackingState instead. This is because

this version of UE has deprecated FXRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5 , FXRMotionControllerData handled both motion controller and hand

tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRMotionControllerData section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

The SenseGlove Unreal Engine Handbook

284 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. From the Tools menu choose New C++ class... .

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

The SenseGlove Unreal Engine Handbook

285 / 365

6. Name the new pawn class DebugPawn .

The SenseGlove Unreal Engine Handbook

286 / 365

7. Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from

the File menu choose the Reparent Blueprint class.

9. In the new Reparent blueprint window choose DebugPawn as the new parent.

The SenseGlove Unreal Engine Handbook

287 / 365

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the ADebugPawn class has been set as the new
parent.

The SenseGlove Unreal Engine Handbook

288 / 365

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice , OpenXRHMD , SenseGloveBuildHacks , SenseGloveDebug ,
SenseGloveSettings , and SenseGloveTracking modules as either a private or

public dependency.

The SenseGlove Unreal Engine Handbook

289 / 365

12. Locate the C++ header and source file for the ADebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules
{
 public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)
 {
 PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

 PublicDependencyModuleNames.AddRange(new string[] { "Core",
"CoreUObject", "Engine", "InputCore" });

 PrivateDependencyModuleNames.AddRange(new string[]
 {
 "InputDevice",
 "OpenXRHMD",
 "SenseGloveBuildHacks",
 "SenseGloveDebug",
 "SenseGloveSettings",
 "SenseGloveTracking"
 });

 // Uncomment if you are using Slate UI
 // PrivateDependencyModuleNames.AddRange(new string[] { "Slate",
"SlateCore" });

 // Uncomment if you are using online features
 // PrivateDependencyModuleNames.Add("OnlineSubsystem");

 // To include OnlineSubsystemSteam, add it to the plugins section in
your uproject file with the Enabled attribute set to true
 }
}

The SenseGlove Unreal Engine Handbook

290 / 365

14. Modify the DebugPawn.cpp implementation file to look like this:

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"

#include "DebugPawn.generated.h"

UCLASS()
class VIRTUALHANDCPP_API ADebugPawn : public APawn
{
 GENERATED_BODY()

private:
 // The virtual hand drawing settings.
 UPROPERTY(EditDefaultsOnly, Category="DebugPawn",
 meta=(AllowPrivateAccess="false"))
 FSGDebugGizmoSettings HandDrawingSettings;

public:
 // Sets default values for this pawn's properties
 ADebugPawn();

protected:
 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

public:
 // Called every frame
 virtual void Tick(float DeltaTime) override;

 // Called to bind functionality to input
 virtual void SetupPlayerInputComponent(class UInputComponent*
PlayerInputComponent) override;

private:
 // The method responsible for drawing a virtual hand.
 void DrawHand(EControllerHand Hand) const;
};

The SenseGlove Unreal Engine Handbook

291 / 365

// Fill out your copyright notice in the Description page of Project
Settings.

#include "DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn::ADebugPawn()
{
 // Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
 PrimaryActorTick.bCanEverTick = true;

 // Set the default virtual hand drawing settings.
 HandDrawingSettings = FSGDebugGizmoSettings{
 1.0f,
 FColor{255, 0, 0, 255},
 FColor{0, 255, 0, 255},
 FColor{0, 0, 255, 255},
 false,
 1.1f,
 0,
 0.2f,
 };
}

// Called when the game starts or when spawned
void ADebugPawn::BeginPlay()
{
 Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);

 // Attempt at drawing the left/right virtual hands every frame.
 DrawHand(EControllerHand::Left);
 DrawHand(EControllerHand::Right);
}

// Called to bind functionality to input
void ADebugPawn::SetupPlayerInputComponent(UInputComponent*

The SenseGlove Unreal Engine Handbook

292 / 365

PlayerInputComponent)
{
 Super::SetupPlayerInputComponent(PlayerInputComponent);
}

void ADebugPawn::DrawHand(const EControllerHand Hand) const
{
 // Get the world and cache it, if it's null we return early.
 UWorld* World{GetWorld()};
 if (!IsValid(World))
 {
 return;
 }

 FXRMotionControllerData MotionControllerData;
 const bool bGotMotionControllerData =
FSGXRTracker::GetMotionControllerData(
 World, Hand, MotionControllerData);

 // Return if the struct data is invalid!
 if (!bGotMotionControllerData || !MotionControllerData.bValid)
 {
 return;
 }

 // Return if the device is not being tracked!
 if (MotionControllerData.TrackingStatus == ETrackingStatus::NotTracked)
 {
 return;
 }

 // Ensure that MotionControllerData.DeviceVisualType is a hand!
 if (!ensureAlwaysMsgf(MotionControllerData.DeviceVisualType
 == EXRVisualType::Hand,
 TEXT("Invalid DeviceVisualType type!")))
 {
 }

 // Ensure that MotionControllerData.HandKeyPositions has the position
data
 // for 26 joints!
 if (!ensureAlwaysMsgf(MotionControllerData.HandKeyPositions.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyPositions count!")))
 {
 return;
 }

The SenseGlove Unreal Engine Handbook

293 / 365

15. Now, rebuild the source code and go back to the VRTemplateMap , then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

 // Ensure that MotionControllerData.HandKeyRotations has the rotation
data
 // for 26 joints!
 if (!ensureAlwaysMsgf(MotionControllerData.HandKeyRotations.Num()
 == EHandKeypointCount,
 TEXT("Invalid HandKeyRotations count!")))
 {
 return;
 }

 // Iterate over the hand joint positions and rotations!
 for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)
 {
 const FVector& JointPosition{
 MotionControllerData.HandKeyPositions[JointIndex]
 };
 const FQuat& JointRotation{
 MotionControllerData.HandKeyRotations[JointIndex]
 };

 // Draw a single joint's gizmo!
 // Please note that we could alternatively:
 // Use FSGDebugCube::Draw() to draw a cube.
 // Or use the FSGDebugVirtualHand::Draw() method and pass the
 // MotionControllerData directly to draw the virtual hand
 // all at once without iterating the joints. But, that's not
 // goal of this tutorial.
 FSGDebugGizmo::Draw(World, JointPosition, JointRotation,
HandDrawingSettings);
 }
}

The SenseGlove Unreal Engine Handbook

294 / 365

The SenseGlove Unreal Engine Handbook

295 / 365

Low-level Blueprint API
Unfortunately, due to Unreal Engine's limited availability of automated
documentation generation tools, there is no updated online documentation for the
SenseGlove Blueprint API. However, this does not mean that no documentation is
available. In fact, most of the Blueprint code is already documented within the
relevant header files. Any modules with the Kismet postfix in the name contain the
Blueprint documentation. For example, the Blueprint documentation for the Core
module can be found inside the Source/SenseGloveCoreKismet/Public/SGCoreKismet
directory.

There is also an outdated Blueprint documentation hosted on GitLab. This
documentation was generated for the early releases of the plugin using
kamrann/KantanDocGenPlugin and kamrann/KantanDocGenTool, which is no longer
maintained.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine Blueprint project and a video tutorial:

SenseGlove UE Tutorial 04 | Basic C++ API and BlueprintsSenseGlove UE Tutorial 04 | Basic C++ API and Blueprints

The SenseGlove Unreal Engine Handbook

296 / 365

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://github.com/kamrann/KantanDocGenPlugin
https://github.com/kamrann/KantanDocGenTool
https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://youtu.be/9ICAH2ZUvVk
https://www.youtube.com/watch?v=9ICAH2ZUvVk

Low-level C++ API
Due to Unreal Engine's limited availability of automated documentation generation
tools, there is no updated online documentation for the SenseGlove Unreal Engine
C++ API. However, this does not mean that no documentation is available. A
significant portion of the API is documented within the relevant header files. For
example, the C++ API documentation for the Core module can be found inside the
Source/SenseGloveCore/Public/SGCore directory.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

Nevertheless, since this plugin builds on top of the SGConnect and SGCoreCpp third-
party C++ libraries, the upstream documentation provides detailed information on
various aspects of the underlying SenseGlove C++ API.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine C++ project and a video tutorial:

SenseGlove UE Tutorial 04 | Basic C++ API and BlueprintsSenseGlove UE Tutorial 04 | Basic C++ API and Blueprints

The SenseGlove Unreal Engine Handbook

297 / 365

https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgconnect
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgcorecpp
https://senseglove.gitlab.io/SenseGloveDocs/native/cpp-reference.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://youtu.be/9ICAH2ZUvVk
https://www.youtube.com/watch?v=9ICAH2ZUvVk

Platform Support Matrix

Windows
(MSVC
2017)

Windows
(MSVC
2019)

Windows
(MSVC
2022)

Linux x86-
64 (Native
Toolchain)

Linux
AArch64
(Native

Toolchain)

5.5 ❌ ❌ ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x

5.4 ❌ ❌ ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x

5.3 ❌ ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x

5.2 ❌ ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x ✅ v2.2.x

5.1 ❌ ⚠️ v2.0.x ⚠️ v2.0.x ⚠️ v2.0.x ⚠️ v2.0.x

5.0 ❌ ⚠️ v1.6.x ⚠️ v1.6.x ⚠️ v1.6.x ⚠️ v1.6.x

4.27 ⚠️ v1.4.x ⚠️ v1.4.x ⚠️ v1.4.x ⚠️ v1.4.x ⚠️ v1.4.x

4.26 ⚠️ v1.0.x ⚠️ v1.0.x ❌ ⚠️ v1.0.x ❌

4.25 ⚠️ v1.0.x ⚠️ v1.0.x ❌ ⚠️ v1.0.x ❌

4.24 ⚠️ v1.0.x ⚠️ v1.0.x ❌ ⚠️ v1.0.x ❌

4.23 ⚠️ v1.0.x ⚠️ v1.0.x ❌ ⚠️ v1.0.x ❌

The SenseGlove Unreal Engine Handbook

298 / 365

Windows
(MSVC
2017)

Windows
(MSVC
2019)

Windows
(MSVC
2022)

Linux x86-
64 (Native
Toolchain)

Linux
AArch64
(Native

Toolchain)

4.22 ⚠️ v1.0.x ⚠️ v1.0.x ❌ ⚠️ v1.0.x ❌

✅ Supported
⚠️ Not supported by the latest release and might be lacking features
❌ Not supported at all
❓ Unknown or untested

Remarks:

Per Epic's Marketplace Guidelines in regards to Code Plugins (sections 2.6.3 .d
and 3.1.b), we are only able to distribute or update the SenseGlove plugin for
the last 3 stable versions of Unreal Engine. As a result, we won't be able to
publish updates or bug fixes for the older versions of the Engine except on rare
occasions and only through our official repository on Microsoft Azure DevOps.
All third-party libraries on Windows built against Windows SDK 10.0 .
Oculus and VIVE support is only provided through the recommended Android
NDK versions by Epic Games.
wjwwood/serial requires Android NDK API Level 28+ in order to be built
successfully.
All third-party libraries target Android NDK API Level 29 , thus any project
relying on the plug-in should be build with the same NDK API Level.

The SenseGlove Unreal Engine Handbook

299 / 365

https://www.unrealengine.com/en-US/marketplace-guidelines
https://github.com/wjwwood/serial

Planned Features Completion Status

Implemented as of v2.2.x

 Full SenseGlove low-level core API access through Unreal C++.
 Full SenseGlove low-level core API access through Blueprint.
 DK 1 Support.
 Nova 1 Support.
 Nova 2 Support.
 Support for Microsoft Windows as a development platform.
 Support for GNU/Linux as a development platform.
 Support for Microsoft Windows as a deployment platform.
 Support for GNU/Linux x64 as a deployment platform.
 Support for GNU/Linux AArch64 as a deployment platform.
 Support for Android as a deployment platform.
 Support for Oculus Quest 2 and Oculus Quest Pro.
 Support for HTC VIVE Pro and HTC VIVE Focus 3.
 Support for HTC VIVE Trackers and HTC VIVE Wrist Trackers.
 On-device calibration for Android without the need for SenseCom.
 Haptic feedback including force feedback, buzz, and thumper commands.
 A customizable Grab component that could be added to any actor.
 A customizable Touch component that could be added to any actor.
 Ability to grab, release, and throw objects around.
 Separation of the real and virtual hand rendering.
 An out-of-the-box customizable SGPawn with the ability to be extended in

C++ and Blueprint.
 Easy wrist/hand tracking debugging using the SenseGlove Debug module.
 A generic Settings module with the ability to override settings.
 C++/Blueprint interaction events such as OnGrabStateUpdated,

OnTouchStateUpdated, OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch.

 A fall back to HMD and wrist tracker hardware auto-detection mechanism
when automatic detection of the wrist tracker hardware is desired.

The SenseGlove Unreal Engine Handbook

300 / 365

 OpenXR-compatible hand tracking (XR_EXT_hand_tracking) support.
 FXRMotionControllerData compatible hand animation system on UE

versions 5.2 , 5.3 , and 5.4 .
 FXRHandTrackingState compatible hand animation system on UE versions

5.5+ .
 FXRMotionControllerData compatible wrist tracking system on UE versions

5.2 , 5.3 , and 5.4 .
 FXRHandTrackingState compatible wrist tracking system on UE versions

5.5+ .
 FXRMotionControllerData compatible hand interaction manipulation system

on UE versions 5.2 , 5.3 , and 5.4 .
 FXRHandTrackingState compatible hand interaction manipulation system on

UE versions 5.5+ .
 Ability to fallback to hand tracking when a glove is not present and use the

bare hands for interactions, or a combination of glove and hand tracking if no
motion controller input is detected.

 The SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,
Skeleton Editor, or Skeletal Mesh Editor.

 A flexible virtual hand animation system that can take the mesh bone's
transforms into account for a more reliable hand animation.

 Ability to manage the Engine Scalability Settings through the SenseGlove
plugin in order to change the graphics settings on the fly.

Upcoming features planned for the v2.3.x release

Planned features long-term

 Get tracking input from sources other than a SenseGlove device.
 Be able to assign behaviors to different objects (meshes) in the scene (e.g.

Slider, Hinge, basic Grabables, etc).
 Make it so developers can define or extend their own behavior(s) to an

object through Code / Blueprint (e.g. I want a car door that is like a slider, but
follows a path rather than a straight line).

The SenseGlove Unreal Engine Handbook

301 / 365

 Make the hand(s) able to push around physics-driven objects (for as much
as their behaviors allow) (in backlog).

 Be able to grab objects with up to 2 hands (and move them around with
both hands at the same time in a way that seems realistic).

 Ensure that our virtual hands (and the objects they hold) do not phase
through other physics objects (e.g. walls and tables).

 Allow other scripts to force a grab and/or release to occur (for example,
when you place it apart at the designated location, it gets removed from your
hand and snaps into place).

 Have some form of weight simulation by making certain objects harder to
push, lowering manipulation speed, or making objects only moveable with two
hands.

 (Optional) Make it so the fingers of your virtual hands do not clip inside the
meshes you are holding (certain people see this as an indicator of how fast the
Force-Feedback activates - but it's basically just rendering).

The SenseGlove Unreal Engine Handbook

302 / 365

Changelog
All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic
Versioning.

[2.2.2] - 2024-11-08

This patch release addresses a few issues with both glove and hand-tracking.

Fixed
Fixed a chain of critical bugs that gets triggered due to
GloveConnectivityCheckInterval getting passed as seconds to the engine

rather than milliseconds. Thus, the default or any large value for
GloveConnectivityCheckInterval causes noticeable long delays between glove-

connectivity-check intervals and consequently renders the hand-tracking state
invalid in certain situations when the
bFallbackToHandTrackingIfNoGloveDetected option is false.

[2.2.1] - 2024-10-23

This patch release focuses exclusively on updates to the documentation.

Documentation

Updated all URLs, screenshots, and tutorials to reflect the transition from the
Unreal Engine Marketplace to Fab, Epic’s new unified content marketplace.

The SenseGlove Unreal Engine Handbook

303 / 365

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Revised documentation now points to the new home of the SenseGlove Unreal
Engine Plugin on Fab, ensuring users have access to the latest resources and
information.

[2.2.0] - 2024-10-22

This is a minor release with some breaking API and ABI changes, focusing mainly on
migrating away from the deprecated FXRMotionControllerData in favor of
FXRMotionControllerState and FXRHandTrackingState on Unreal Engine 5.5+ .

Added

Completed support for the upcoming Unreal Engine 5.5 release.
Added USGVirtualHandComponent::GetMotionControllerState() and the
equivalent Blueprint
function UVirtualHandComponentKismetLibrary::GetMotionControllerState on UE
5.5+ .

Added USGVirtualHandComponent::GetHandTrackingState() and the equivalent
Blueprint function UVirtualHandComponentKismetLibrary::GetHandTrackingState
on UE 5.5+ .
Added USGWristTrackerComponent::GetMotionControllerState() and the
equivalent Blueprint function
UWristTrackerComponentKismetLibrary::GetMotionControllerState on UE 5.5+ .

Added USGWristTrackerComponent::GetHandTrackingState() and the equivalent
Blueprint function
UWristTrackerComponentKismetLibrary::GetHandTrackingState on UE 5.5+ .

Added a variant of FSGDebugVirtualHand::Draw() and the equivalent Blueprint
function USGDebugVirtualHandKismetLibrary::Draw_FXRHandTrackingState()
which accept FXRHandTrackingState on UE 5.5+ .
Added the new member bTracked to the FSGXRHandState struct.
Added FSGXRTracker::GetMotionControllerState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary::GetMotionControllerState() .

The SenseGlove Unreal Engine Handbook

304 / 365

Added FSGXRTracker::GetHandTrackingState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary::GetHandTrackingState() .

Fixed

Additional minor fixes and improvements that may not be listed here.

Changed

Replaced all internal usages of the FXRMotionControllerData struct with either
FXRMotionControllerState or FXRHandTrackingState on UE 5.5+ .

Deprecated USGVirtualHandComponent::GetMotionControllerData() on UE 5.5+ .
Deprecated USGWristTrackerComponent::GetMotionControllerData() on UE
5.5+ .

Deprecated the variant of FSGDebugVirtualHand::Draw() which accepts
FXRMotionControllerData as a parameter on UE 5.5+ .

Renamed USGDebugVirtualHandKismetLibrary::Draw to
USGDebugVirtualHandKismetLibrary::Draw_FXRMotionControllerData for more

clarification.
Renamed an FSGXRHandState member from bReceivedJointPoses to
bHasReceivedJointPoses .

Changed the FSGXRTracker::GetAllKeypointStates() signature on UE 5.5+ to
match the IHandTracker interface API changes.
The animation system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

The wrist tracking system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

The hand interaction manipulation on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

The virtual hand debugging system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

The SenseGlove Unreal Engine Handbook

305 / 365

Documentation

Added the documentation on consuming the FXRHandTrackingState struct in
both Blueprint and C++.
Updated the documentation on consuming the FXRMotionControllerData
struct.
Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.4] - 2024-10-22

This is a bugfix release that delivers some documentation fixes.

Documentation

Updated the documentation on consuming the FXRMotionControllerData
struct.
Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.3] - 2024-10-11

This bugfix release centers on adding initial support for the upcoming Unreal Engine
5.5 .

Added

Added initial support for the upcoming Unreal Engine 5.5 release. Please note
that, while the plugin is functional, a few adjustments are still required to
address deprecation warnings. Specifically, the FXRMotionControllerData struct
needs to be replaced with the newly introduced FXRMotionControllerState and

The SenseGlove Unreal Engine Handbook

306 / 365

FXRHandTrackingState structs, along with adjustments to adhere to the new
hand-tracking API changes.
Added support for Epic Native Toolchain v23 .

Fixed

Fix a bug inside USGVirtualHandComponent::PostEditChangeProperty() where the
get member name check happens against the wrong class and member names.
Additional minor fixes and improvements that may not be listed here.

Changed

The SenseGlove libraries have been updated to v2.105.0-02a2e508 .

[2.1.2] - 2024-09-02

This is a bugfix release that addresses a few non-critical issues and documentation
fixes.

Fixed

Fix a bug where the hands are always visible even when
bVisibleWhenHandDataUnavailable is disabled.

Fix a bug where the HandVisibilityChangedEvent event is not triggered on the
virtual hand component visibility changes.
Fix the wrong script name for USGHMDTrackerKismetLibrary .
Fix the wrong script name for USGXRTrackerKismetLibrary .
Fix LogPython: Warning: 'SGHMDTrackerKismetLibrary' and
'SGXRTrackerKismetLibrary' have the same name

(SenseGloveHeadMountDisplayKismetLibrary) when exposed to Python. Rename

one of them using 'ScriptName' meta-data when packaging the game.

The SenseGlove Unreal Engine Handbook

307 / 365

Fix the non-existent default hand-mesh warnings polluting the logs when
packaging the game.
Expanded the clickable area on the handbook index page revision buttons.
Minor documentation fixes.

[2.1.1] - 2024-08-18

This is a bugfix release with no actual plugin code changes, mostly addressing issues
in the documentation and third-party dependencies caused by source control merge
conflicts.

Fixed

Fix the messed up changelog file caused by cherry-picking merge conflicts
between the dev branch and the master branch.
Fix a bug that causes a handbook revision mismatch when deploying the
handbook from the dev branch.
Fix a bug where SG_GIT_IS_SHALLOW_CLONE while building the handbook is always
set to yes even if it's not a shadow clone because SG_DOT_GIT_SHALLOW_FILE
evaluates to an empty string when the .git/shallow file does not exist.
Fix some documentation typos.

Removed

Removed Android NDK r25 armv7 and x86 dependencies brought back by
mistake while merging v2.1.0 from the dev branch to the master branch.

[2.1.0] - 2024-08-16

This is a minor release focusing mainly on bringing OpenXR-compatible hand
tracking support (XR_EXT_hand_tracking) and Head-mounted Display automatic

The SenseGlove Unreal Engine Handbook

308 / 365

detection for adjusting wrist tracker offsets automatically at runtime.

Added

Added SenseGloveTracking and module which provides OpenXR-compatible
hand tracking by implementing XR_EXT_hand_tracking support, HMD auto-
detection, and SenseGlove device tracking.
Added USenseGloveTrackingKismet module in order to expose part of the
SenseGloveTracking functionality to Blueprint.
Added FSGXRTracker, the underlying main class that implements the OpenXR
compatibility.
Added USGXRTrackerKismetLibrary in order to allow Blueprint to retrieve the
FXRMotionControllerData directly from our tracking module.
Added the SGTrackingTypes header to the SenseGloveTypes module in order to
define and share SenseGloveTracking module types through this header across
the plugin modules.
A fallback to HMD and wrist tracker hardware auto-detection mechanism has
been added to be triggered in situations when automatic detection of the wrist
tracker hardware is desired, e.g., either by not setting it explicitly, or setting it to
the default None value. Please note that this is still highly experimental and HTC
VIVE Focus 3 and HTC XR Elite cannot be distinguished in the current iteration.
Though, since the tracker devices and offsets for both headsets are the same in
the end it does not make a difference if both headsets are detected as each
other.
Added ESGHeadMountedDisplayDevice enum with supported HMDs list.
Added ESGViveHMDDetectionPriority enum in order to choose which headset
we attempt to detect between VIVE Focus 3 and VIVE XR Elite as we cannot
distinguish them, yet.
Added the FSGHMDTracker utility class, in order to easily gather information
about the HMD device at runtime.
Added USGHMDTrackerKismetLibrary which exposes the equivalent C++ HMD
auto-detection functionality to Blueprint.
Added FSGHMDTrackingSettings config struct.
Added the FSGGloveTracer utility class, in order to easily check the left or right
glove connectivity or retrieve the connected glove instances.

The SenseGlove Unreal Engine Handbook

309 / 365

Added USGGloveTrackerKismetLibrary which exposes the equivalent C++
functionality to Blueprint.
Added FSGGloveTrackingSettings config struct.
Added FSGTrackingSettings config struct.
Added FSGHandTrackingSettings config struct.
Added FSGWristTrackingDebuggingSettings config struct.
Added FSGVirtualHandSettings config struct.
Added FSGVirtualHandAnimationSettings config struct.
Added FSGVirtualHandDebuggingSettings config struct.
Added FSGVirtualHandGrabSettings config struct.
Added FSGVirtualHandHapticsSettings config struct.
Added FSGVirtualHandMeshSettings config struct.
Added FSGVirtualHandPhalangesLengthSettings config struct.
Added FSGVirtualHandTouchSettings config struct.
Added USGVirtualHandComponent::OnHandVisibilityChanged() event in order
to notify other components/actors whenever the virtual hand mesh appears or
disappears (for example, this could happen when a glove is
connected/disconnected).
GetMotionControllerData() has been introduced to the
USGVitualHandComponent in order to retrieve the OpenXR-compatible glove
data in Unreal's FXRMotionControllerData format.
Added FSGVirtualHandAnimInstanceProxy::GetMotionControllerData and many
more accessor methods usable only by child classes to allow consumption of
the data required for manipulating the virtual hand mesh animations.
GetMotionControllerData() has been introduced to the
USGWristTrackerComponent in order to retrieve the OpenXR-compatible glove
data in Unreal's FXRMotionControllerData format.
Added USGGrabComponent::SimulatePhysics() method.
Added FSGDebugCube.
Added FSGDebugCubeSettings.
Added the SenseGloveDebugKismet module in order to allow drawing of
debugging, cubes, gizmos, and virtual hands from Blueprint.
Added USGDebugCubeKismetLibrary in order to expose the FSGDebugCube
functionalities to Blueprint.
Added USGDebugGizmoKismetLibrary in order to expose the FSGDebugGizmo
functionalities to Blueprint.

The SenseGlove Unreal Engine Handbook

310 / 365

Added USGDebugVirtualHandKismetLibrary in order to expose the
FSGDebugVirtualHand functionalities to Blueprint.
Added a new static Draw() method overload to DebugGizmo which allows
passing an FQuat instead of a FRotator.
Introduced a new FXRMotionControllerData compatible hand animation system
with the ability to take the mesh bone's transforms into account for a more
reliable hand animation.
Introduced a new FXRMotionControllerData compatible wrist tracking system.
Introduced a new FXRMotionControllerData compatible hand interaction
manipulation system.
Added the ability to fallback to hand tracking when a glove is not present and
use the bare hands for interactions, or a combination of glove and hand
tracking if no motion controller input is detected.
Added the SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,
Skeleton Editor, or Skeletal Mesh Editor by extending the Unreal Editor.
Added FSGAssetUtils editor-only class.
Added FSGContentBrowserExtension editor-only class.
Added FSGPluginStyle editor-only class.
Added FSGSocketsEditor editor-only class.
Added FSGSocketsEditorCommands editor-only class.
Added the FSGInitializationSettings config struct in order to control how the
plugin is initialized.
Introduced the FSGGameUserSettings for managing the Engine Scalability
Settings through the SenseGlove plugin in order to change the graphics
settings on the fly.
Added USGGameUserSettingsKismetLibrary in order to allow all the Engine
Scalability Settings to be managed from the Blueprint side.
Added FSGGameUserSettingsSettings config struct.
Added the SenseGlove console commands: SG_GetEngineScalabilitySettings()
and SG_SetEngineScalabilitySettings(Scalability).
Added SGHardwareBenchmarkingSettings config struct.
Introduced ESGEngineScalabilitySettings enum.
Added FSGVirtualHandSettingsOverrides config struct used by the new settings
override system.
Added SGWristTrackingSettingsOverrides config structured by the new settings
override system.

The SenseGlove Unreal Engine Handbook

311 / 365

Added support for Android API level 32 in addition to the API level 29.
Introduced the SenseGlove Unreal Engine Handbook as an attempt at
documenting the SenseGlove Unreal Engine Plugin.
Merged the pack utility branch to the plugin's source code at /Packager which
adds the SenseGlove Unreal Engine Marketplace Packager v0.4.0-a65bb20
binaries and configurations.

Fixed

Fixed a bug when the virtual hand inside the game is not visible but still collides
with other objects inside the scene, mistakenly triggering events like
OnGrabStateUpdated and OnTouchStateUpdated.
Fixed a bug where USGGrabComponent's bAffectPhysicsState does not
enables physics on its owning actor at BeginPlay() .
Fixed various wrong Kismet script names and their class exports.
Fixed the display name for various overloads of the Blueprint-exposed function
Queue Command Vibro Level to expose sensible display names.

Some Android UPL tweaks, permission, and build fixes.
Many other large and small fixes and improvements that might not be listed
here.
A few small bugfixes that have already been backported to the v2.0.x series.

Changed

Now, if bValidateIfDefaultClassesAreSGCompliant option from
FSGInitializationSettings is enabled (default) the SenseGlove plugin checks for
default SenseGlove-compliant GameMode, GameInstance, etc, at module
initialization and tries to set to default, native SenseGlove classes, if any of
those default classes are not a SenseGlove or a SenseGlove-derived class.
The USGSettings has been fully revamped with more customizations added and
categorized in a different manner adding many new structs and removing
some, in order to have fine-grained control over the various aspects and
functionality of the plugin components.
The USGSettings constructor visibility has been changed from public to private.

The SenseGlove Unreal Engine Handbook

312 / 365

The Settings override system has been overhauled as well affecting how we
override settings from the USGVirtualHandComponent and
USGWristTrackerComponent.
The SenseGlove libraries have been updated to v2.104.1-55fddbd2.
GetHandPose() has been replaced by GetMotionControllerData inside
USGVirtualHandComponent (see the relevant entry in the Added and Removed
sections).
Many functions inside USGVirtualHandComponent for retrieving bone names
or reference transforms has been renamed to return different data types; e.g.
GetLeftHandFingerBoneNames(), GetRightHandFingerBoneNames(),
GetLeftHandFingerBoneName(), and GetRightHandFingerBoneName() renamed
to GetLeftHandBoneNames(), GetRightHandBoneNames(),
GetLeftHandBoneName(), and GetRightHandBoneName() respectively.
bHiddenInGameIfNoGloveDetected UPROPERTY from
USGVirtualHandComponent has been renamed to
bVisibleWhenHandDataUnavailable and accordingly all of its getters and
setters; bVisibleWhenHandDataUnavailable = false now acts as
bHiddenInGameIfNoGloveDetected = true, and vice-versa.
USGWristTrackerComponent now uses FXRMotionControllerData for wrist
tracking instead of calculating the wrist location by calling the SenseGlove API.
FSGVirtualHandAnimInstanceProxy now relies on FXRMotionControllerData to
animate the hands instead of a TMap of bone names and rotations which
allows it to also apply the bone locations.
The new OpenXR animation system now takes into account the mesh bone's
transforms for a more reliable hand animation.
FSGDebugVirtualHand::Draw now accepts a FXRMotionControllerData
parameter instead of all WristLocation, WristRotation, JointPositions, and
JointRotations parameters.
FSGDebugVirtualHandSettings has been renamed to
FSGVirtualHandDebuggingSettings.
The value for USGGrabComponent's AttachmentSocketName uproperty now
defaults to the value of the plugin's GrabAttachPointSocketName instead of
Name_NONE.
The USGGrabComponent now enables bGravityEnabled , bSimulatePhysics ,
and calls WakeRigidBody on its owning actor at BeginPlay() if
bAffectPhysicsState is enabled.

The SenseGlove Unreal Engine Handbook

313 / 365

Updated the Directory Structure section of the main README file to reflect the
latest toolchain support status.
The /CHANGELOG.md file has been migrated to
/Handbook/src/overview/changelog.md

The /LICENSE.md file has been migrated to /Handbook/src/license/senseglove-
unreal-engine-plugin.md

The /LICENSE-THIRD-PARTY.md file has been migrated to
/Handbook/src/license/third-party.md and every third-party component's

license has been split; adding /Handbook/src/license/senseglove-sdk.md for the
SenseGlove SDK, /Handbook/src/license/boost-cpp-libraries.md for the Boost
C++ Libraries, and /Handbook/src/license/serial-communication-library.md for
the Serial Communication Library.
The Platform Support Matrix section of the main README file has been
migrated to /Handbook/src/overview/platform-support-matrix.md .
The Planned Features Completion Status section of the main README file has
been migrated to /Handbook/src/overview/planned-features-completion-
status.md .
The Directory Structure section of the main README file has been migrated to
/Handbook/src/overview/directory-structure.md .

The SenseGlove settings' main config struct is now marked as DefaultConfig
which means it does not require to be saved when settings are changed and
they take effect immediately as the user updates them.
Replaced all bitfield uproperties with booleans.
Changed the DocsURL from the old Blueprint docs website to the new
SenseGlove Unreal Engine Handbook website.
The Blueprint signature for various overloads of the Blueprint-exposed function
Queue Command Vibro Level has been changed to expose sensible display

names.

Removed

Dropped support for Unreal Engine 5.1 and Epic Native Toolchain v20 (used to
build UE 5.0 and 5.1 Linux dependencies).
Removed the Allbreaker virtual hand model as it's no longer compatible with
the SenseGlove plugin.

The SenseGlove Unreal Engine Handbook

314 / 365

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://unreal.docs.senseglove.com/
https://unreal.docs.senseglove.com/

Removed ASGVirtualHandActor as it was experimental and we no longer
maintain it and haven't been doing so for a long time.
Removed FSGVirtualHandAnimInstanceProxy::GetBonesRotations().
Removed USGVirtualHandComponent::GetHandPose() and it's no longer
possible to get the hand pose data from USGVirtualHandComponent as
GetHandPose() has been removed. If you need it, you could always use the
SenseGlove low-level API to retrieve it from the glove.
Removed also GetFingerBoneName(), GetFingerBoneRefTransform(),
GetFingerBoneRefRotation() and GetFingerBoneRefRotation() from
USGVirtualHandComponent.
Removed some remnants of UE 5.1 and older releases from the C++ code.
Removed the pack utility branch and merge it to the plugin's source code at
/Packager .

Known Issues

With the new OpenXR release, the separation of the real and virtual hand
rendering is broken. The reason is the animation system now uses the OpenXR
data in the world transforms which yields better animations, but comes at the
cost of overriding the the hand position set by the wrist tracker component's
position and rotation. If FXRMotionControllerData is invalid and
bVisibleWhenHandDataUnavailable is enabled for example, the system works as

expected, since the animation system won't proceed to animate the hand
meshes without valid FXRMotionControllerData . Since the animation system is
only aware of the hand mesh it's animating versus the real hand and virtual
hand meshes it means either it should become aware of the physics events like
begin and end overlap events and also the real vs virtual hands, or it should
resort back to animating the virtual hand meshes in local or component space.
This release marks this feature as broken for now until we come up with a
reasonable solution in the future.
The UXRDeviceVisualizationComponent provided by Unreal Engine is used in the
SGPawn class as ControllerVisualizerLeft and ControllerVisualizerRight for
implementing the wrist tracking hardware visualization feature. However, it is
not compatible with the new OpenXR system in certain scenarios. For instance,
when the motion controllers serve as wrist tracking hardware since the
SenseGlove plugin is now introduced to the engine as an OpenXRHandTracking

The SenseGlove Unreal Engine Handbook

315 / 365

system, it causes the UXRDeviceVisualizationComponent to visualize the wrist
tracking hardware at coordinates (0.0f, 0.0f, 0.0f) instead of their actual location
and rotation in the world. This happens because the component incorrectly
registers them as inactive, possibly because it's assumed hand tracking and
motion controllers cannot be in use at the same time. Currently, we use this
feature solely for debugging, and we have an alternative in the form of wrist-
tracking debug gizmos, which can be toggled on or off via the settings system.
In future releases, we might remove this feature due to its incompatibility,
unless we find a solution to make the UXRDeviceVisualizationComponent work
with the new system. Alternatively, we may develop our own version of the
UXRDeviceVisualizationComponent .

Although the SenseGlove OpenXR implementation is fully compatible with the
IOpenXRHMD interface and the FOpenXRHMD XRTrackingSystem , it is not

compatible with the FOculusXRHMD backend provided by the Meta XR plugin. The
same issue likely applies to the VIVE OpenXR plugin. So, if these plugins are
enabled in your project, the SenseGlove OpenXR will not function as intended,
effectively breaking the plugin's functionality. It seems these plugins are
necessary in order to make the fallback to the hand-tracking feature work on
Android. While we may add support and compatibility with Meta XR and VIVE
OpenXR plugins in the future, for the time being, if your project requires these
plugins, we advise continuing with the v2.0.x release of the SenseGlove Unreal
Engine plugin until this issue is addressed.

[2.0.8] - 2024-07-15

This is a bugfix release that contains a somewhat important bugfix backported from
the next release of the plugin as documented below.

Fixed

Fix a bug where the SGPawn right-hand grab colliders' default size is mistakenly
set to the default value for the left-hand grab colliders at CDO initialization time.

The SenseGlove Unreal Engine Handbook

316 / 365

[2.0.7] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only fixing issues with
binary assets incompatible with UE versions earlier than 5.4.

Fixed

Make the Allbreaker assets compatible with UE5.1+ again as the v2.0.5 update
breaks compatibility with UE versions earlier than 5.4, thus leaving the engine
unable to load those assets.

[2.0.6] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only removing
development/test assets from UE 5.3 that were never meant to be shipped.

Removed

Removed the dev/test virtual hand models that leaked into the 5.3 branch.

Fixed

[2.0.5] - 2024-05-22

This is a bugfix release with no actual plugin code changes, only focusing on fixing
the Allbreaker virtual hand model issues.

The SenseGlove Unreal Engine Handbook

317 / 365

Fixed

Fix the wrong palm bone names on the Allbreaker virtual hand models.

[2.0.4] - 2024-05-17

This is a bugfix release with no actual plugin's code change.

Fixed

Fix our in-house Unreal Engine Marketplace submission tool's configurations
where the Content folder (containing the Allbreaker hand model) is mistakenly
ignored during the submission. This release reintroduces the Virtual Hand
Model and its material missing from the previous release.
Fix the SenseGlove.uproject's wrong versioning submitted to the Unreal Engine
Marketplace.

[2.0.3] - 2024-05-15

This is a bugfix release addressing mostly RunUAT build issues on Unreal Engine 5.4.

Fixed

Fix UE 5.4 RunUAT build issue: "Asking CppCompileEnvironment for a single
Architecture, but it has multiple Architectures (arm64, x64)", affecting
SenseGloveConnectImpl and SenseGloveCoreImpl modues.
Improved target platform detection when building SenseGloveConnectImpl and
SenseGloveCoreImpl modules and also distinguishing the x64 builds from
arm64 on Microsoft Windows.
Fix other UE 5.4 RunUAT build issues, mostly caused by missing headers.

The SenseGlove Unreal Engine Handbook

318 / 365

Removed

Removed support for Android armeabi-v7a and x86 architectures as they are
no longer supported by the supported engine versions.

[2.0.2] - 2024-04-25

This is a patch release with no code changes.

Added

Introduce official Unreal Engine 5.4 support to the Unreal Engine Marketplace.

Changed

Updated the Platform Support Matrix with the latest changes. This is the last
release to support Unreal Engine 5.1 as we no longer are able to push updates
for this release to the Unreal Engine Marketplace. The v2.0.1 release for Unreal
Engine 5.1 can be obtained from the Unreal Engine Marketplace, and v2.0.2
through our Microsoft Azure DevOps repositories. Please note that there are
no actual code changes between these two releases and in terms of
functionality they are almost identical.

[2.0.1] - 2024-04-15

This is a bugfix release.

The SenseGlove Unreal Engine Handbook

319 / 365

Fixed

Fix a bug inside both SGVirtualHandComponent and
SGWristTrackerComponent where the connected glove's UObject instance gets
destroyed and re-instantiated every frame. With this fix now the glove instance
will be created or destroyed only when a glove connects to or disconnects from
the system.
Update the outdated Platform Support Matrix and its remarks section to reflect
the latest status information.
Fix the wrong header file description sections for the header files inside
SenseGloveKismet/Public/SGKismet/ .

Changed

SenseGlove libraries have been updated to v2.102.0-35d4de3f.
Together, SenseGlove libraries v2.102.0-35d4de3f and SenseCom v1.6.1 remove
the need to call ResetCalibration every time and are able to store and load
calibration profiles from disk.
SesenGloveBackend module is no longer calling
FSGHandLayer::ResetCalibration on every backend initialization.

[2.0.0] - 2024-03-22

This is the second major release of the SenseGlove Unreal Engine Plugin adding
support for Nova 2 with enormous breaking changes to the current C++ and
Blueprint APIs.

Added

Added support for the SenseGlove Nova 2 devices.
Added support for Quest 3 controllers.
Various classes have been added to the API in order to implement the new
functionalities and features from the latest upstream SenseGlove libraries.

The SenseGlove Unreal Engine Handbook

320 / 365

Added initial support for the upcoming Unreal Engine 5.4 release.
Added a pair of default production-ready virtual hand meshes for the left and
right hands, courtesy of Allbreaker LLC Columbia. For usage and redistribution,
please consult the LICENSE-THIRD-PARTY.md file.

Fixed

A few critical bug fixes that have already been backported to the v1.x.x series
through v1.9.3 to v1.9.8 releases.
Revamped the way we do FVector <-> SGVect3D, FQuat <-> SGQuat, and
SenseGlove <-> Unreal Engine angles conversions in order to properly translate
between the SenseGlove and Unreal Engine coordinate systems.
Allow the C++ compiler the opportunity to perform RVO/NRVO if applicable.
Fix the modules' order inside the .uplugin file.
Fix a build issue inside FSGArrayUtils::FromStdVector introduced by newer
MVSC updates due to stricter implicit uint64 to int32 conversions.
Fix a build issues inside FSGArrayUtils when performing non-Unity builds due to
the missing header.
Fix other build issues in USGDevice, USGNovaGloveSensorData, FSGDeviceImpl,
and FSGSenseGloveVarsImpl when performing non-Unity builds due to the
missing relevant headers.
Fix changelog formatting.
Some other improverment and fixes.

Changed

SenseGlove libraries have been updated to v2.101.12-62b1be11.
The SenseGlove Unreal Engine Plugin now declares the OpenXR plugin as a
dependency, so that the OpenXR plugin will be enabled automatically as soon
as the SenseGlove Unreal Engine Plugin gets enabled.
Various classes and parts of the API have been changed in order to reflect and
adhere to upstream SenseGlove libraries.
Reverse the Platform Support Matrix order from newer Unreal Engine versions
to the older ones.

The SenseGlove Unreal Engine Handbook

321 / 365

https://www.allbreaker.co/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/LICENSE-THIRD-PARTY.html

Clarify the engine support policy in the main readme file by adding the
corresponding references from the Epic Marketplace Guidelines and a URL to
their guidelines page.
The SGTouchComponent uproperties BuzzDuration and BuzzLevel now utilize
different different names in order to correspond to the underlying API changes.
They have been renamed to VibrotactileDuration and VibrotacktileLevel.
The SGTouchComponent uproperties ForceFeedbackLevel and BuzzLevel (now
VibrotacktileLevel) parameters type have changed from int32 to float with the
value range varying between 0.0f to 1.0f instead of 1 to 100 in order to
correspond to the underlying API changes.
The SGVirtualHandComponent now assumes the default grab point's name as
GenericGrabPoint instead of GrabPoint as default if not specified in the Unreal
Blueprint Editor.
The SGPawn on UE 5.2+ now utilizes UXRDeviceVisualizationComponent in
order to properly display the controller meshes shipped with Unreal Engine's
OpenXR plugin, or a user-provided mesh. On UE 5.1 this could still be set on the
WristTrackerLeft and WristTrackerRight components. Please note that despite
the fact that on UE 5.2+ it's still possible to utilize the WristTrackerLeft and
WristTrackerRight for setting the controller meshes, this has been deprecated
in UE 5.2+ and is no longer supported.

Removed

Various classes and parts of the API have been removed in order to reflect and
adhere to upstream SenseGlove libraries.
Removed the redundant SGIC_int32_Ref interop type.

[1.9.8] - 2024-03-12

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

The SenseGlove Unreal Engine Handbook

322 / 365

Fixed

Fix a bug where the right-hand mesh is always hidden inside the game no
matter whether the right glove is connected or not.
Fix a crash inside the USGHandPose::FromHandAngles method.
Some performance optimizations by utilizing MoveTemp in return statements.
Some improvements applied to the source code.
Some other minor fixes.

Changed

The BonesRotations TMap is no longer a public field of
FSGVirtualHandAnimInstanceProxy and instead could be retrieved by calling
the GetBonesRotations() method.

[1.9.7] - 2024-02-18

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

Fixed

Fix various bugs inside the SGPlayerController which occur when the thumb
and pinky fingers are simultaneously touching different SGTouchComponents,
or only one of them is in touch with such a component. In this case pinky's buzz
and force-feedback levels are determined from the SGTouchComponent that is
in collision with the thumb instead of the one that is touched by the pinky. Or,
the pinky could ignore the buzz and force-feedback level if the thumb is not in
collision with an SGTouchComponent. Or, the pinky could have reacted with a
buzz or force feedback while only the thumb is in contact with an
SGTouchComponent.
Fix the BuzzDuration UPROPERTY range in order not to get clamped at 100.0f
and also use float values for ClampMin and UIMin specifiers instead of integer

The SenseGlove Unreal Engine Handbook

323 / 365

values.

[1.9.6] - 2024-02-14

This is a bugfix release.

Fixed

Fix a few critical bugs inside the NovaGlove class where the higher levels of the
API including constructors, Parse, and NewNovaGlove methods mistakenly
instantiate a SenseGloveImpl class instead of a NovaGloveImpl class.

[1.9.5] - 2024-02-09

This is a bugfix release.

Fixed

Fix a wrong type-casting inside SGDeviceModel::ParseFirmware where
OutMainVersion and OutSubVersion arguments are getting passed to the lower
levels of the API. This could potentially result in a segfault at the FFI boundary
between lower and higher levels of the API.

[1.9.4] - 2024-02-08

This is a bugfix release addressing mostly Blueprint API issues with ABI breaking
changes inside the Blueprint layer, backported from the next major release of the
plugin as documented below.

The SenseGlove Unreal Engine Handbook

324 / 365

Fixed

Fix the Blueprint Parse function signature for the NovaGloveInfoKismetLibrary
where the OutGloveInfo passed by the caller was never actually assigned as it
was not getting passed by reference.
Changelog formatting.

[1.9.3] - 2024-02-03

This is a hotfix release addressing a few critical issues that might result in crashes or
malfunctions for users of the low-level SenseGlove API, backported from the next
major release of the plugin as documented below.

Fixed

Fix a potential memory corruption inside one of the SGBasicHandModel
constructors where the StartPositions parameter gets passed as the
StartRotations parameter to lower levels of the API.
Fix a potential memory corruption inside one of the SGSenseGloveInfo
constructors where the StartPositions parameter gets passed as the Functions
parameter to lower levels of the API.
Fix a potential memory corruption where inside the
SGHapticGloveCalibrationSequence::GetCurrentInstruction method, the return
statement of the function is getting assigned to the const parameter
NextStepKey, thus the return statement of the function will always be empty as
well.
Fix a potential memory corruption where inside one of the overloads of the
SGSenseGloveImpl::GetGlovePose method, the out parameter of the method is
getting passed as the SensorData parameter to the lower levels of the API.
Fix multiple Equals methods for a few classes such as SGInterpolationSet,
SGNovaGloveHandProfile, SGNovaGloveInfo, SGSenseGloveHandProfile,
SenseGloveInfo, SenseGlovePose, where the Equal method compares the
current instance against itself instead of the other instance passed to as the
parameter to the method.

The SenseGlove Unreal Engine Handbook

325 / 365

Removed a redundant code statement inside the
SGNovaGloveImpl::GetSubFirmwareVersion method.
Some minor const correctness fixes.
Some other minor code fixes and improvements.
Fix the wrong version numbers inside the paltform support matrix and the
main .uplugin file.
Minor changelog fixes.
Bumped the copyright years.

[1.9.2] - 2023-11-03

Added

Added a list of planned features and their completion status to the main
README file.

Fixed

A bug where the released actor is going to be NULL whenever the
OnActorReleased event fires.

[1.9.1] - 2023-10-11

Fixed

Add the missing Unreal Engine C++ header to files that rely on the
ENGINE_*_VERSION macros in order to fix the Epic Store build failures on UE
5.3.

The SenseGlove Unreal Engine Handbook

326 / 365

[1.9.0] - 2023-10-10

Changed

The BlueprintImplementableEvent UFUNCTION specifier for the
OnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed,
OnActorReleased, OnActorBeginTouch, and OnActorEndTouch events have
been changed to BlueprintNativeEvent in order to allow them to be
implemented from the child C++ classes as well. This won't break any existing
Blueprint code that relies on the previous BlueprintImplementableEvent
signature.

Fixed

Add a missing release note entry for the v1.8.0 release to the changelog file.

[1.8.0] - 2023-10-10

Added

Introduced new SGPawn events: OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch.
Exposed OnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed,
OnActorReleased, OnActorBeginTouch, and OnActorEndTouch events to
Blueprint as BlueprintImplementableEvent.

Fixed

Fix a bug where the OnTouchStateUpdated event is mistakenly triggered
instead of the OnGrabStateUpdated when the right thumb fingertip grab
collider overlaps with a grabbable actor.

The SenseGlove Unreal Engine Handbook

327 / 365

Fix the DECLARE_EVENT macro signature for OnGrabStateUpdated and
OnTouchStateUpdated events.

[1.7.0] - 2023-09-14

Added

Introduce SGGameInstance, a customized SenseGlove game instance for future
use.
Added the new SenseGloveBackend and SenseGloveBackendKismet modules.
Added SG_CPP20 C++ macro for C++20 detection, which is now default from UE
5.3 onwards.
Added SG_CAPTURE_THIS C++ macro as a workaround for error C4855: implicit
capture of 'this' via '[=]' is deprecated in /std:c++20 in order to build the same
lambda captures without extra #ifdefs on all supported engine versions.

Changed

SenseGlove libraries have been updated to v2.12.0-19c9854.
SGCoreImpl/SGPlatform has been moved to SGBuildHacks/SGPlatform.

Fixed

Proper initialization of the SenseGlove backend in order to fix a bug in certain
situations where SGConnect::Init() gets called every frame.
Some other minor fixes and improvements.

The SenseGlove Unreal Engine Handbook

328 / 365

[1.6.1] - 2023-08-14

Fixed

Fix Unreal Engine 5.0 build issues.
Minor documentation fixes.

[1.6.0] - 2023-08-14

Added

Added support for the upcoming Unreal Engine 5.3.
Now, the hand's velocity is applied to grabbed actors after being released from
the hand.
Introduce the real hands to the SenseGlove module (SGPawn) API.
Added separation of the virtual and real hand rendering.

Fixed

Fix the wrong default debug virtual hand gizmo colors when initialized using the
default constructor.
Some minor performance fixes and improvements.

Changed

SenseGlove libraries have been updated to v2.11.0-b775a05.

The SenseGlove Unreal Engine Handbook

329 / 365

[1.5.3] - 2023-07-19

This is a hotfix release mostly addressing Android Bluetooth performance issues.

Fixed

Minor changelog fixes.

Changed

SenseGlove libraries have been updated to v2.10.1-3b0e7c9.

[1.5.2] - 2023-07-19

This is a hotfix release mostly addressing Android-related issues.

Fixed

Fix a build issue with Android shipping builds due to sgconnect.jar not getting
copied automatically in the AFSProject which is compiled for shipping builds
when AndroidFileServer (AFS) is enabled.
Minor changelog fixes and some source code formatting fixes.

[1.5.1] - 2023-07-13

This is a hotfix release addressing a few critical issues introduced by the recent
changes.

The SenseGlove Unreal Engine Handbook

330 / 365

Fixed

Fix a wrist tracker bug where left and right hands' wrist trackers are mistakenly
tracking the opposite hand's motion source.
Fix a bug where the right hand is not able to do grab or release.

[1.5.0] - 2023-06-16

This release breaks ABI/API compatibility with the previous versions in some areas as
documented below.

Added

Added HTC VIVE Focus 3 positional tracking hardware enum.
Added support for the Meta Quest Pro, HTC VIVE, and HTC VIVE Focus 3
positional tracking hardware.
Added two options to the wrist tracker settings (to the global plugin settings
and the overrides in the wrist tracker component) in order to be able to specify
a custom motion source for the left and right hands, so that it allows SteamVR-
based trackers such as HTC VIVE or HTC VIVE Focus 3 to operate with the
SGPawn.

Fixed

Fix a bug where SteamVR trackers such as HTC VIVE and HTC VIVE Focus 3's
wrist orientation and location were not being tracked.

Changed

Fully refactored the top-level configurations in the settings system into
USTRUCTs.
SenseGlove libraries have been updated to v2.10.0-12133ac.

The SenseGlove Unreal Engine Handbook

331 / 365

Removed

Dropped support for the Epic Native Toolchain v19, MSVC v141 (Visual Studio
2017), and thus Unreal Engine 4.27 as it has been marked as deprecated since
v1.4.x.
Removed any kind of support for Oculus Touch (Oculus Rift S and Oculus Quest
1) positional tracking hardware, thus the enum as well.
Removed any kind of support for Pico Neo 2 positional tracking hardware, thus
the enum as well.
Removed any kind of support for Pico Neo 3 positional tracking hardware, thus
the enum as well.

[1.4.3] - 2023-06-01

This is a hotfix release addressing a critical Android crash.

Fixed

Fix a critical Android crash that happens where the default development hand
meshes are not found, which means almost always since we don't ship any
default virtual hand mesh at the moment.
Minor changelog release formatting fix in order to stay consistent.

[1.4.2] - 2023-06-01

This is a hotfix release addressing a few critical issues.

Fixed

Fix build issues with certain compilers when the Unreal Engine version is older
than 5.2.

The SenseGlove Unreal Engine Handbook

332 / 365

Reintroduced the Virtual Hand and the Wrist Tracker debug gizmos which have
temporarily been disabled due to a bug in the settings system.
Some minor changelog fixes.

[1.4.1] - 2023-05-29

This is a bugfix release with a focus on Android build issues.

Fixed

Fix an Android Gradle build issue that happens when the game's package name
won't start with com.senseglove.*.
Suppress a grade warning for non-arm64 architectures when the build target is
Android.

Removed

Remove dead Gradle code from the Android module.

[1.4.0] - 2023-05-19

This release breaks ABI/API compatibility with the previous versions.

Added

Added support for the stable release of Unreal Engine 5.2 (the preview release
has been supported since v1.2.0).
Added Linux AArch64 platform support.
Added a new Grab component that can turn any actor into a grabbable object.

The SenseGlove Unreal Engine Handbook

333 / 365

Added a new Touch component that enables haptic feedback such as Buzz and
Force-Feedback commands.
Added an optional feature in order to automatically stop all haptics on the
EndPlay event, wherever the virtual hand component is used. By default, it's
enabled.

Fixed

Fix Blueprint signatures for USGVirtualHandComponentKismetLibrary and
make all the Blueprint exposed functions static.

Changed

SenseGlove libraries have been updated to v2.7.1-965f90c with support for
Linux AArch64.
The Virtual Hand and the Wrist Tracker debug gizmos (the intended use is only
for SenseGlove developers for really low-level stuff; thus won't affect the users
of the plugin at all) have been disabled and will be ignored due to an esoteric
bug in the settings systems which has been scheduled to be fixed in the future
releases.

Removed

Removed the redundant SenseGloveCoreTypes module which causes all kinds
of packaging issues with certain versions of the engine.

Deprecated

This is the last release to support Unreal Engine 4.27 and please keep in mind
that the current release is not obtainable through the Unreal Engine
Marketplace. The latest published version on the Marketplace for 4.27 is v1.3.1.
Per Epic's Marketplace policy regarding Code Plugins, we are only able to
distribute or update the SenseGlove plugin for the last 3 stable versions of

The SenseGlove Unreal Engine Handbook

334 / 365

Unreal Engine. As a result, we won't be able to publish updates or bug fixes for
the older versions of the Engine except on rare occasions and only through our
official repository on Microsoft Azure DevOps.

[1.3.1] - 2023-04-28

Fixed

Fix RunUAT build issues caused by missing headers.
Minor documentation fixes.

[1.3.0] - 2023-04-28

This release breaks ABI/API compatibility with the previous versions in addition to
breaking coordinates systems conversions between Unreal Engine and the
SenseGlove libraries.

Added

A new generic SenseGlove Debug module.
A debug virtual hand.

Fixed

Fix the wrist tracker miscalculations for the Quest 2 controllers (other headsets
might need fixing as well, in that case, future releases will address that).
Minor code improvement and fixes.
Minor documentation fixes.

The SenseGlove Unreal Engine Handbook

335 / 365

Changed

Breaking API/ABI changes in the Settings and the main SenseGlove module due
to some settings refactoring.
Breaking changes in the SenseGlove/Unreal coordinates systems conversions
due to underlying changes in the SenseGlove Core Libraries.
SenseGlove libraries have been updated to v2.6.0-aac3d56.

[1.2.1] - 2023-03-30

Fixed

Fix RunUAT build issues with Android.

[1.2.0] - 2023-03-28

This release breaks ABI/API compatibility with the previous versions.

Added

Android / Oculus on-device glove calibration.
Introduced the animated Virtual Hand Model (as a set of virtual hand and wrist
tracker components and an actor) with in-editor animation availability.
Introduced SGPawn, SGPlayerController, SGGameModeBase, etc classes.
Added an internal SenseGloveCoreTypes module in order to share common
SenseGloveCore types between various modules.
Segregated Android binaries for NDK r21e (UE 4.27 and 5.0) and r25b (UE 5.1,
5.2).
Fully functional and stable Linux development support.
Fully functional and stable Unreal Engine 5.2 preview support has been added.

The SenseGlove Unreal Engine Handbook

336 / 365

Added a Plugin's settings manager and two new modules SenseGloveSettings
and SenseGloveSettingsKismet.

Changed

SenseGlove libraries have been updated to the Linux-aware version: v2.5.0-
8069342.
API has changed to use degrees instead of radians.
SGCoordinates utility class name has been changed to SGAngles and now the
plugin API uses degrees in contrast of SenseGlove libraries by default.
Migrate common nested array types into the SenseGloveTypes module from
the SenseGloveCore module.

Removed

Removed a few thousand lines of archaic pre-public-release dead code.
Dropped Android NDK r21b binaries used by the older engine versions.
Purged the dead code for dropped engine versions by v1.1.1 (4.22, 4.23, 4.24,
4.25, and 4.26) that carried over to the current version.
Removed redundant SGConnectImpl/SGPlatform.
Removed redundant SGTypes/SGConnectTypes.

Known Issues

Wrist Tracker's offsets are a bit off (e.g. on Quest 2), scheduled to be fixed in the
next patch release.

The SenseGlove Unreal Engine Handbook

337 / 365

[1.1.1] - 2023-02-07

Added

Initial support for the upcoming Unreal Engine 5.2.
Add support for Android armeabi-v7a with neon, x86-64, and x86 builds in
addition to arm64-v8a.

Fixed

Fix various Android build issues.
Some minor fixes and improvements.

Changed

Bump SenseGlove libraries to v2.1.2-95ec6e7.

[1.1.0] - 2023-02-03

Added

Whitelist Android as a target platform.
Introduce Android support.
Add third-party library SGConnect for Android v1.1.0.

Fixed

Fix Android build issues caused by the log module.

The SenseGlove Unreal Engine Handbook

338 / 365

Changed

SGConnect and SGCore libraries have been updated to v2.1.1-0569c74.

Removed

Removed the enum utils class due to ANY_PACKAGE deprecation warnings in
Unreal Engine 5.1.
Support for older versions of the Engine (namely, 4.22, 4.23, 4.24, 4.25, and 4.26)
has been dropped.

[1.0.4] - 2022-12-02

This is a minor release focusing mostly on adherence to the Unreal Engine
Marketplace Guidelines based on the feedback from Epic Games.

Added

Added support for MSVC 2017

Changed

Updated SenseGlove libraries (SGCore/SGConnect) to v2.0.4.

[1.0.3] - 2022-11-29

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

The SenseGlove Unreal Engine Handbook

339 / 365

Changed

Adjust Config/FilterPlugin.ini in order to conform to Epic's Market Place
Guidelines.

[1.0.2] - 2022-11-27

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

Added

Added the newly acquired Unreal Engine Market Place Offer ID to the .uplugin
file.
List the dotfiles inside the FilterPlugin.ini file as well.
Add the copyright notice to the source files missing it.
Add the SenseGlove SDK license to the third-party license file.

Fixed

Fix the readme typos and errors.
Minor fixes in the changelog for previous releases.

[1.0.1] - 2022-11-25

Changed

Exposed SenseGloveTypes as a public dependency in SenseGloveConnect and
SenseGloveCore modules, so that the C++ users of the API don't need to
explicitly add it as a dependency.

The SenseGlove Unreal Engine Handbook

340 / 365

Cleaned up the redundant headers/modules dependencies from SGCore
headers.

Fixed

Fix RunUAT build issues prior to Epic Store submission.

[1.0.0] - 2022-11-24

Added

Initial public release of the SenseGlove haptic API for Unreal Engine with
support for Microsoft Windows and GNU/Linux.

The SenseGlove Unreal Engine Handbook

341 / 365

The SenseGlove Unreal Engine Handbook

342 / 365

Directory Structure
/
 │
 ├── Config
 │
 ├── Documentation (this will be generated by running the <code>make</code>
command inside the Handbook directory)
 │
 ├── Handbook (this is the mdBook source code, used to generate the
Documentation folder and not distributed to [Fab](https://www.fab.com/))
 │
 ├── Resources
 │
 └── Source (various plug-in modules)
 │
 ├── SenseGlove (the UE-specific high-level API)
 │
 ├── SenseGloveAndroid (the Android-specific module)
 │
 ├── SenseGloveBackend (responsible for initialization and
deinitialization of the backend libraries)
 │
 ├── SenseGloveBackendKismet (exposes Blueprint-specific functionality
from the SenseGloveBackend module)
 │
 ├── SenseGloveBuildHacks (uses Exceptions and RTTI, internally used
for compiler-specific build hacks)
 │
 ├── SenseGloveConnect (exposes part of the SGConnect low-level API to
C++)
 │
 ├── SenseGloveConnectImpl (uses Exceptions and RTTI, intended for
internal use only)
 │
 ├── SenseGloveConnectKismet (SGConnect functionality exposed to
Blueprint)
 │
 ├── SenseGloveCore (exposes part of the SGCoreCpp low-level API to
C++)
 │
 ├── SenseGloveCoreImpl (uses Exceptions and RTTI, intended for
internal use only)
 │
 ├── SenseGloveCoreKismet (SGCoreCpp functionality exposed to

The SenseGlove Unreal Engine Handbook

343 / 365

Blueprint)
 │
 ├── SenseGloveDebug (a utility debug module)
 │
 ├── SenseGloveDebugKismet (exposes Blueprint-specific functionality
from the SenseGloveDebug module)
 │
 ├── SenseGloveEditor (the Editor module)
 │
 ├── SenseGloveInterop (internally used for interoperability between
RTTI disabled/enabled modules)
 │
 ├── SenseGloveKismet (exposes Blueprint-specific functionality from
the SenseGlove module)
 │
 ├── SenseGloveLog (the internal log module)
 │
 ├── SenseGloveSettings (the plugin's settings manager)
 │
 ├── SenseGloveSettingsKismet (exposes Blueprint-specific
functionality from the SenseGloveSettings module)
 │
 ├── SenseGloveTracking (provides XR_EXT_hand_tracking support, HMD
auto-detection, and SenseGlove device tracking)
 │
 ├── SenseGloveTrackingKismet (exposes Blueprint-specific
functionality from the SenseGloveTracking module)
 │
 ├── SenseGloveTypes (exposes various enums from the backend libraries
and also types from the SenseGlove module)
 │
 ├── SenseGloveUtils (the internal utility module)
 │
 └── ThirdParty (3rd-party dependencies)
 │
 ├── android (.jar file Java libraries for Android)
 │
 ├── include (header files)
 │ │
 │ ├── boost
 │ │
 │ ├── SenseGlove
 │ │ │
 │ │ ├── Connect (SGConnect headers)
 │ │ │
 │ │ └── Core (SGCoreCpp headers)
 │ │
 │ └── serial

The SenseGlove Unreal Engine Handbook

344 / 365

 │
 └── lib (platform-specific pre-built binary dependencies)
 │
 ├── android
 │ │
 │ └── r25b (Android NDK r25b dependencies for UE
5.1+)
 │ │
 │ ├── arm64 (64-bit ARM variant of Android)
 │ │ │
 │ │ ├── debug
 │ │ │
 │ │ └── release
 │ │
 │ └── x64 (64-bit x86-64 variant of Android)
 │ │
 │ ├── debug
 │ │
 │ └── release
 │
 ├── linux
 │ │
 │ ├── v21 (UE 5.2 Linux dependencies)
 │ │ │
 │ │ ├── aarch64 (dependencies targeting AArch64
Linux architecture)
 │ │ │ │
 │ │ │ ├── debug
 │ │ │ │
 │ │ │ └── release
 │ │ │
 │ │ └── x86-64 (dependencies targeting x86-64
Linux architecture)
 │ │ │
 │ │ ├── debug
 │ │ │
 │ │ └── release
 │ │
 │ └── v22 (UE 5.3 and 5.4 Linux dependencies)
 │ │
 │ ├── aarch64 (dependencies targeting AArch64
Linux architecture)
 │ │ │
 │ │ ├── debug
 │ │ │
 │ │ └── release
 │ │
 │ └── x86-64 (dependencies targeting x86-64

The SenseGlove Unreal Engine Handbook

345 / 365

Linux architecture)
 │ │
 │ ├── debug
 │ │
 │ └── release
 │
 └── win64
 │
 ├── msvc142 (Microsoft Visual Studio 2019
dependencies)
 │ │
 │ ├── debug
 │ │
 │ └── release
 │
 └── msvc143 (Microsoft Visual Studio 2022
dependencies)
 │
 ├── debug
 │
 └── release

The SenseGlove Unreal Engine Handbook

346 / 365

Extra Resources
There are various resources available for older versions of the SenseGlove Unreal
Engine Plugin prior to v2.1.x that might still be partially relevant. These include
example projects, demo scenes, and tutorials. Plans are underway to provide new
example projects, demo scenes, and tutorials for the latest release. In the meantime,
the outdated resources can still be beneficial

Examples and Demo Projects

A basic OpenXR-compatible Blueprint demo demonstrating basic functionality
such as grab/release, touch with buzz and force-feedback, etc (compatible with
versions v2.1.0+).
A basic Blueprint demo demonstrating basic functionality such as grab/release,
touch with buzz and force-feedback, etc (compatible with versions >= v1.4.x and
<= v2.0.x).
Example C++ API Project (only compatible with early v1.x.x releases)
Example Blueprint API Project (only compatible with early v1.x.x releases)

Tutorials

Finding out your SenseGlove plugin version
Plugin installation guide for Microsoft Windows
C++ & Blueprint examples for Microsoft Windows
Plugin and examples installation guide for GNU/Linux
How to connect to Nova gloves on GNU/Linux using Blueman Bluetooth
Manager
How to connect to Nova gloves on GNU/Linux using command-line
The basic C++ and Blueprint API usage
How to setup the virtual hand model & the SenseGlove pawn
How to deploy to Oculus Quest 2 and Android

The SenseGlove Unreal Engine Handbook

347 / 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://youtu.be/iF0JU2kpNhw
https://youtu.be/QqWeRHNceqY
https://youtu.be/qRaNOc3OHqU
https://youtu.be/1T7LAGp3e6I
https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow
https://youtu.be/Swkk_KmXwq8
https://youtu.be/9ICAH2ZUvVk
https://youtu.be/_PEppB_yPCU
https://youtu.be/zU8Nf4ssOO0

Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)
Setting up VIVE Pro & VIVE Trackers in Unreal Engine
Setting up VIVE Focus 3 & VIVE Wrist Trackers in Unreal Engine
SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands
SGBasicDemo v2: upgrading your projects to the SenseGlove Unreal Engine
Plugin v2.0.0

The SenseGlove Unreal Engine Handbook

348 / 365

https://youtu.be/jN4VcfXVrTA
https://youtu.be/jvFDNdq_4xQ
https://youtu.be/SGmQevkzsY4
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/VbWfoep-Hsg
https://youtu.be/VbWfoep-Hsg

SenseGlove Unreal Engine Plugin
License
The SenseGlove Unreal Engine Plugin is licensed under the terms of the MIT License.
Below is the MIT License:

Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components. For a list of these libraries and their own
respective open-source licenses take a look at the third-party licenses, please.

MIT License

Copyright (c) 2020 - 2024 SenseGlove

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

The SenseGlove Unreal Engine Handbook

349 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/third-party.html

SenseGlove Unreal Engine Handbook
License
The SenseGlove Unreal Engine Handbook is licensed under the terms of the CC BY
(Creative Commons Attribution) License. Below is the CC BY License:

The SenseGlove Unreal Engine Handbook

350 / 365

Attribution 4.0 International

===

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

 Considerations for licensors: Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
 wiki.creativecommons.org/Considerations_for_licensors

 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other

The SenseGlove Unreal Engine Handbook

351 / 365

 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More considerations
 for the public:
 wiki.creativecommons.org/Considerations_for_licensees

===

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright

The SenseGlove Unreal Engine Handbook

352 / 365

 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 a. License grant.

 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

 a. reproduce and Share the Licensed Material, in whole or
 in part; and

The SenseGlove Unreal Engine Handbook

353 / 365

 b. produce, reproduce, and Share Adapted Material.

 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

 3. Term. The term of this Public License is specified in Section
 6(a).

 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

 5. Downstream recipients.

 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

 b. Other rights.

 1. Moral rights, such as the right of integrity, are not

The SenseGlove Unreal Engine Handbook

354 / 365

 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

 2. Patent and trademark rights are not licensed under this
 Public License.

 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

 a. Attribution.

 1. If You Share the Licensed Material (including in modified
 form), You must:

 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:

 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

 ii. a copyright notice;

 iii. a notice that refers to this Public License;

 iv. a notice that refers to the disclaimer of
 warranties;

 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

 b. indicate if You modified the Licensed Material and

The SenseGlove Unreal Engine Handbook

355 / 365

 retain an indication of any previous modifications; and

 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and

 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS

The SenseGlove Unreal Engine Handbook

356 / 365

 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

 2. upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so

The SenseGlove Unreal Engine Handbook

357 / 365

 will not terminate this Public License.

 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

===

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that

The SenseGlove Unreal Engine Handbook

358 / 365

material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

The SenseGlove Unreal Engine Handbook

359 / 365

Third Party Licenses
Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components.

The following third-party software are used and shipped with the SenseGlove Unreal
Engine Plugin:

The SenseGlove SDK (a.k.a. SenseGlove Backend Libraries, or SenseGlove Core
Libraries)
The Boost C++ Libraries
The Serial Communication Library

For more information consult their own respective open-source licenses, please.

The SenseGlove Unreal Engine Handbook

360 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-unreal-engine-plugin.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/boost-cpp-libraries.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/serial-communication-library.html

SenseGlove SDK License

SENSEGLOVE SDK LICENSE

Purchase of the Product does not entitle you to ownership or a license to any
software generated by SenseGlove for use with the Product (the “Software”).
To the extent that SenseGlove, in its sole discretion, grants you access to
any
such Software, the Software is licensed by us or by the relevant
licensor/owner
subject to the relevant end-user license agreement or other license terms
included with the Product and/or on the SenseGlove Websites including the
Github
page of SenseGlove (the “License Terms“).

Specifically, SenseGlove shall have sole discretion to determine and change
the
availability, nature, features, content, versioning of any Software that it
makes available to you, for download through the the Github page of
SenseGlove
or otherwise (including the SenseGlove software developer kit (“SDK”)).
Purchase of a Product does not entitle you to access to any specific
features,
content or version of the SDK, including and especially versions of the SDK
that
have not yet been made available to the public. SenseGlove will have no
obligation to provide any updates or upgrades to any Software it makes
available
to you, but in the event that it does, such updates, upgrades and any
documentation will be subject to the License Terms available at
https://www.senseglove.com/solutions/.

Except to the extent expressly provided by us in writing or under the License
Terms, the Software is provided “AS IS” without any warranties, terms or
conditions as to quality, fitness for purpose, non-infringement, performance
or
correspondence with description and we do not offer any warranties or
guarantees
in relation to the Software installation, configuration or error/defect
correction.

The SenseGlove Unreal Engine Handbook

361 / 365

Boost C++ Libraries License

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

The SenseGlove Unreal Engine Handbook

362 / 365

Serial Communication Library License

Copyright (c) 2012 William Woodall, John Harrison

Permission is hereby granted, free of charge, to any person obtaining a copy
of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of
the Software, and to permit persons to whom the Software is furnished to do
so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The SenseGlove Unreal Engine Handbook

363 / 365

Build Information
The SenseGlove Unreal Engine Handbook

Handbook
Revision

2.2

Handbook
Revision URL

https://unreal.docs.senseglove.com/2.2

Handbook PDF
URL

https://unreal.docs.senseglove.com/2.2/the-senseglove-
unreal-engine-handbook-2.2.pdf

Git Branch HEAD

Git Tag v2.2.2

Git Commit 1cbe24a4

Git Commits
Since Tag

0

Git Tree State clean

Git Is Shallow
Clone

no

Git Latest
Remote Tag

v2.2.2

Git Version v2.2.2

Git Version
Major

2

Git Version
Minor

2

Git Version
Patch

2

Plugin Version v2.2.2

Plugin Version
Major

2

Plugin Version
Minor

2

The SenseGlove Unreal Engine Handbook

364 / 365

https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf

The SenseGlove Unreal Engine Handbook

Plugin Version
Patch

2

Build Host mamadou-legion

Build Time Fri Nov 08, 2024 12:27 CET +0100

The SenseGlove Unreal Engine Handbook

365 / 365

	Introduction
	Overview
	🚀 Getting Started
	⚙️ Plugin Configuration
	💡 Miscellaneous
	🛠️ Advanced Topics
	🔌 Low-Level API
	📑 Appendix

	Plugin Installation
	Video Tutorials

	Plugin Installation via the Epic Games Launcher
	Plugin Installation via Microsoft Azure DevOps Repositories
	Download a Specific Version
	Download a Specific Version for a Specifc Unreal Engine Version
	Download the Bleeding-edge Development Branch
	Installation
	Engine-level installation
	Per-project installation
	Linux Build Instructions

	Enabling The SenseGlove Unreal Engine Plugin and Veirfying the Plugin Version
	Video Tutorial

	SenseCom
	SenseCom on GNU/Linux
	Connect to Nova gloves using Blueman Bluetooth Manager
	Video Tutorial

	Connect to Nova gloves using Command-line
	Scripts to Easily Connect and Disconnect from a Glove
	Example Scripts for a Left-Handed Glove

	Video Tutorial

	SenseCom on Microsoft Windows
	Enabling XR_EXT_hand_tracking OpenXR extension on VR Headsets
	Setting Up the SenseGlove Default Classes
	Setting Up SGGameModeBase
	Extending SGGameModeBase

	Setting Up SGPawn
	Extending SGPawn
	Customizing SGPawn

	Setting Up SGPlayerController
	Extending SGPlayerController

	Setting Up SGGameInstance
	Extending SGGameInstance

	Setting Up SGGameUserSettings
	Extending SGGameUserSettings

	Setting Up the Virtual Hand Meshes
	Compatible Virtual Hand Meshes
	Exporting the Virtual Hand Meshes from the VRTemplate
	Importing the Virtual Hand Meshes into Your Own Project
	Setting up the Rigid Bodies
	Setting up the SenseGlove Grab and Touch Sockets
	Accessing the SenseGlove Sockets Editor
	Adding the SenseGlove Sockets
	Clearing All Existing Sockets

	Configuring the SGPawn and Plugin Virtual Hand Mesh Settings
	SGPawn Configuration
	Plugin Virtual Hand Mesh Settings

	Setting Up the Wrist Tracking Hardware
	Setting up the Grab/Release System
	Video Tutorials

	Setting up the Touch System
	Video Tutorials

	The Plugin Settings
	Settings Categories

	The Plugin Initialization Settings
	bValidateIfDefaultClassesAreSGCompliant

	The Game User Settings
	The Hardware-benchmarking Settings
	WorkScale
	CPUMultiplier
	GPUMultiplier

	The Tracking Settings
	bFallbackToHandTrackingIfNoGloveDetected
	Glove Tracking Settings
	Hand Tracking Settings
	HMD Tracking Settings
	Wrist Tracking Settings

	The Glove-tracking Settings
	GloveConnectivityCheckInterval

	The Hand-tracking Settings
	bUseMoreSpecificMotionSourceNames
	bSupportLegacyControllerMotionSources

	The HMD-tracking Settings
	ViveHMDDetectionPriority

	The Wrist-tracking Settings
	TrackingHardware
	TrackingHardwareLocationOffsetLeftHand
	TrackingHardwareLocationOffsetRightHand
	TrackingHardwareRotationOffsetLeftHand
	TrackingHardwareRotationOffsetRightHand
	LeftHandMotionSource
	RightHandMotionSource
	DebuggingSettings
	Overriding the Wrist-tracking Settings from the Wrist Tracker Component

	The Wrist-tracking Debugging Settings
	bDrawDebugWristTracker
	DebugWristTrackerSettings

	The Virtual Hand Settings
	bVisibleWhenHandDataUnavailable
	Animation Settings
	Debugging Settings
	Grab Settings
	Haptics Settings
	Mesh Settings
	Touch Settings
	Overriding the Virtual Hand Settings from the Wrist Tracker Component

	The Virtual Hand Animation Settings
	AnimationBoneRotationCorrectionOffset
	bShouldAnimationApplyBoneLocation

	The Virtual Hand Debugging Settings
	bDrawDebugVirtualHand
	DrawingMode
	DebugCubicHandSettings
	DebugGizmoHandSettings

	The Virtual Hand Grab Settings
	GrabAttachPointSocketName
	GrabAttachPointSocketTransform
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName

	The Virtual Hand Haptics Settings
	bAutoStopAllHapticsOnEndPlay

	The Virtual Hand Mesh Settings
	LeftHandReferenceMesh
	RightHandReferenceMesh
	DistalPhalangesLengthSettings
	RootBoneRotationCorrection
	LeftHandDefaultReferenceBoneTransforms
	RightHandDefaultReferenceBoneTransforms
	LeftHandBoneNames
	RightHandBoneNames
	DefaultLeftHandMeshPath
	DefaultLeftHandMeshPathOnly
	DefaultRightHandMeshPath
	DefaultRightHandMeshPathOnly

	The Virtual Hand Touch Settings
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName
	RingColliderSocketName
	PinkyColliderSocketName

	Overriding The Plugin Settings
	The SenseGlove Virtual Hand Component
	The SenseGlove Wrist Tracker Component

	The SenseGlove Console Commands
	SGGameUserSettings Console Commands
	SG_GetEngineScalabilitySettings
	SG_SetEngineScalabilitySettings

	Deploying to Android (Standalone)
	Upgrade Guide
	Optimizing Your Project for Higher FPS
	Meta Quest Link Advanced Graphics Preferences
	Game User Settings and Engine Scalability Settings
	Optimizing Unreal Projects for Mobile
	General Rendering Settings
	Texture Settings
	Lighting Settings
	Post-Processing Settings
	Materials and Shaders
	Level of Detail (LOD) Settings
	Engine Scalability Settings
	Physics and Collision
	Audio Settings
	Rendering API
	Culling

	Safe and Reliable Glove Access in Blueprint
	OpenXR
	Consuming FXRHandTrackingState
	FXRHandTrackingState in Unreal Engine
	Structure Members of FXRHandTrackingState
	Organization of FXRHandTrackingState
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRHandTrackingState in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRHandTrackingState in C++
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData
	FXRMotionControllerData in Unreal Engine
	Structure Members of FXRMotionControllerData
	Organization of FXRMotionControllerData
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRMotionControllerData in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData in C++
	Drawing and Animating Virtual Hands

	Low-level Blueprint API
	Low-level C++ API
	Platform Support Matrix
	Planned Features Completion Status
	Implemented as of v2.2.x
	Upcoming features planned for the v2.3.x release
	Planned features long-term

	Changelog
	[2.2.2] - 2024-11-08

	Fixed
	[2.2.1] - 2024-10-23
	Documentation

	[2.2.0] - 2024-10-22
	Added
	Fixed
	Changed
	Documentation

	[2.1.4] - 2024-10-22
	Documentation

	[2.1.3] - 2024-10-11
	Added
	Fixed
	Changed

	[2.1.2] - 2024-09-02
	Fixed

	[2.1.1] - 2024-08-18
	Fixed
	Removed

	[2.1.0] - 2024-08-16
	Added
	Fixed
	Changed
	Removed
	Known Issues

	[2.0.8] - 2024-07-15
	Fixed

	[2.0.7] - 2024-05-29
	Fixed

	[2.0.6] - 2024-05-29
	Removed
	Fixed

	[2.0.5] - 2024-05-22
	Fixed

	[2.0.4] - 2024-05-17
	Fixed

	[2.0.3] - 2024-05-15
	Fixed
	Removed

	[2.0.2] - 2024-04-25
	Added
	Changed

	[2.0.1] - 2024-04-15
	Fixed
	Changed

	[2.0.0] - 2024-03-22
	Added
	Fixed
	Changed
	Removed

	[1.9.8] - 2024-03-12
	Fixed
	Changed

	[1.9.7] - 2024-02-18
	Fixed

	[1.9.6] - 2024-02-14
	Fixed

	[1.9.5] - 2024-02-09
	Fixed

	[1.9.4] - 2024-02-08
	Fixed

	[1.9.3] - 2024-02-03
	Fixed

	[1.9.2] - 2023-11-03
	Added
	Fixed

	[1.9.1] - 2023-10-11
	Fixed

	[1.9.0] - 2023-10-10
	Changed
	Fixed

	[1.8.0] - 2023-10-10
	Added
	Fixed

	[1.7.0] - 2023-09-14
	Added
	Changed
	Fixed

	[1.6.1] - 2023-08-14
	Fixed

	[1.6.0] - 2023-08-14
	Added
	Fixed
	Changed

	[1.5.3] - 2023-07-19
	Fixed
	Changed

	[1.5.2] - 2023-07-19
	Fixed

	[1.5.1] - 2023-07-13
	Fixed

	[1.5.0] - 2023-06-16
	Added
	Fixed
	Changed
	Removed

	[1.4.3] - 2023-06-01
	Fixed

	[1.4.2] - 2023-06-01
	Fixed

	[1.4.1] - 2023-05-29
	Fixed
	Removed

	[1.4.0] - 2023-05-19
	Added
	Fixed
	Changed
	Removed
	Deprecated

	[1.3.1] - 2023-04-28
	Fixed

	[1.3.0] - 2023-04-28
	Added
	Fixed
	Changed

	[1.2.1] - 2023-03-30
	Fixed

	[1.2.0] - 2023-03-28
	Added
	Changed
	Removed
	Known Issues

	[1.1.1] - 2023-02-07
	Added
	Fixed
	Changed

	[1.1.0] - 2023-02-03
	Added
	Fixed
	Changed
	Removed

	[1.0.4] - 2022-12-02
	Added
	Changed

	[1.0.3] - 2022-11-29
	Changed

	[1.0.2] - 2022-11-27
	Added
	Fixed

	[1.0.1] - 2022-11-25
	Changed
	Fixed

	[1.0.0] - 2022-11-24
	Added

	Directory Structure
	Extra Resources
	Examples and Demo Projects
	Tutorials

	SenseGlove Unreal Engine Plugin License
	SenseGlove Unreal Engine Handbook License
	Third Party Licenses
	SenseGlove SDK License
	Boost C++ Libraries License
	Serial Communication Library License
	Build Information

