The SenseGlove Unreal Engine Handbook

Introduction

Welcome to the documentation for the SenseGlove Unreal Engine Plugin (a.k.a. The
SenseGlove Unreal Handbook)!

This handbook is an ongoing effort and a work in progress to document the
SenseGlove Unreal Engine Plugin. Feel free to visit this handbook on a regular basis.

Due to superior formatting and frequent updates, we recommend the online version
of the handbook; nonetheless, it's available in PDF format as well.

Tip
Feel free to check out the SenseGlove Unreal Engine Plugin landing page on Fab

as well.

1/365

https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

Overview

To help you navigate the SenseGlove Unreal Engine Handbook, we have organized
the content into several key sections. This structured layout aims to simplify your
journey through the SenseGlove Unreal Engine Plugin, providing clear and detailed
guidance at every step.

4’ Getting Started

This section covers the basics of the SenseGlove Unreal Engine Plugin:

Installation
o Viathe Epic Games Launcher
o Via Microsoft Azure DevOps Repositories

e Enabling and Verifying the Plugin Version
e SenseCom

o SenseCom on GNU/Linux

= Connect to Nova gloves using Blueman Bluetooth Manager
= Connect to Nova gloves using Command-line

o SenseCom on Microsoft Windows
e Enabling XR_EXT_hand_tracking on VR Headsets
e Setup SenseGlove Default Classes
SGPawn
SGPlayerController
SGGameModeBase
SGGamelnstance
SGGameUserSettings
e Setup the Virtual Hand Meshes
e Setup the Wrist Tracking Hardware
e Setup the Grab/Release System
e Setup the Touch System

(¢]

(e}

(e}

(e}

(0]

21365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/command-line.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/microsoft-windows.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-grab-release-system/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-touch-system/

The SenseGlove Unreal Engine Handbook

%£* Plugin Configuration

This section provides detailed information on configuring the plugin:

e Plugin Settings
o Initialization
o Game User Settings
= Hardware-benchmarking
o Tracking
Glove-tracking
Hand-tracking
HMD-tracking
Wrist-tracking
= Debugging
o Virtual Hand
= Animation
= Debugging
= Grab
= Haptics
= Mesh
= Touch
e Overriding Settings

% Miscellaneous

Toipcs that do not fall under any specific category:

SenseGlove Console Commands
Deploying to Android (Standalone)
Upgrade Guide

Optimizing for Higher FPS

3/365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/hardware-benchmarking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/overriding-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/upgrade-guide/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/

The SenseGlove Unreal Engine Handbook

X Advanced Topics

For users familiar with the basics, this section explores advanced features of the
plugin:

o Safe Glove Access in Blueprint
e OpenXR
o Consuming FXRHandTrackingState
= Blueprint
m C++
o Consuming FXRMotionControllerData

= Blueprint
m C++

4 Low-Level API

This section delves into the SenseGlove low-level API:

e Low-Level Blueprint API
e Low-Level C++ API

Appendix

The appendix contains various extra useful information:

e Platform Support Matrix

e Planned Features Completion Status
e Changelog

e Directory Structure

e Extra Resources

4 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/safe-glove-access-blueprint/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/planned-features-completion-status.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/directory-structure.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/extra-resources.html

The SenseGlove Unreal Engine Handbook

Plugin Installation

The SenseGlove Unreal Engine Plugin could be installed using various methods:

e Via the Epic Games Launcher by navigating to the SenseGlove Unreal Engine

Plugin landing page on Fab.
e Via the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps repository.

In the following chapters, we discover each of those methods:

¢ Installation via the Epic Games Launcher
e Installation via Microsoft Azure DevOps Repositories

Video Tutorials

We also have older videos demonstrating both installation methods on Microsoft
Windows and GNU Linux in more detail.

e Plugin installation guide for Microsoft Windows:

SenseGlove UE Tutorial 01 | Getting Started on Windows

517365

https://store.epicgames.com/en-US/download
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
https://youtu.be/QqWeRHNceqY
https://www.youtube.com/watch?v=QqWeRHNceqY

The SenseGlove Unreal Engine Handbook

e Plugin and examples installation guide for GNU/Linux:

SenseGlove UE Tutorial 03 | Getting Started on Linux

6 /365

https://youtu.be/1T7LAGp3e6I
https://www.youtube.com/watch?v=1T7LAGp3e6I

The SenseGlove Unreal Engine Handbook

Plugin Installation via the Epic Games
Launcher

Before beginning the plugin installation via the Epic Games Launcher, ensure you
have signed into your Epic Games account on the Epic Games Launcher and that you
have a supported version of Unreal Engine installed. Supported engine versions can
be found in the Platform Support Matrix.

1. Run the Epic Games Launcher.

Epic Games F R] Launch
Unreal Engine 5.4.4

Unreal Engine 5.4 Released

Unreal Engine

Ruins of the Cloud Temple

Game Animation Sample Project Inside Unreal | Demoing 5.4 Weekly Spotlights
Released! Animation & Rigging Updates

ject includes 500+ AAA quality animations to help yoL This week we chat ith some of the team behind the l % &

2. Navigate to the Fab tab and click Start exploring button which in turn opens
your default web browser pointing to the Fab home page.

71365

https://store.epicgames.com/en-US/download
https://store.epicgames.com/en-US/download
https://dev.epicgames.com/documentation/en-us/unreal-engine/installing-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://www.fab.com/

The SenseGlove Unreal Engine Handbook

" Launch
Epic Gam ews v 0 Re e
@ pic Games Unreal Engine 5.4.4 n

Unreal Engine

Everything you need
to build new worlds

Unreal Engine Marketplace is now Fab - a new marketplace
from Epic Games giving all digital content creators a single
destination to discover, share, buy and sell digital assets.

Start exploring (7

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation,
analyze site usage, and personalize content. Cookies Settings

Reject All

NuLL3rr0 Accept All Cookies

. On the Fab home page, enter the term SenseGlove in the search box and press

Enter. Alternatively, you can go directly to the SenseGlove Unreal Engine Plugin
landing page on Fab directly instead of taking the above two steps.

x +

o

% https://www.fab.com e > b B "oak

@ \z 7.4-':) Discover My Library Publish CQ SenseGlove| ") Q @ N.

Search "SenseGlove" in a Game Engine irs

an Town
R Unity

FEATURED CONTENT

Free Content

Grab the latest October free content while you can G UEFN

Explore now

@ Unreal Engine

ONTENT

https://www.fab.com/
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

4. Click on the senseGlove Unreal Engine Plugin in the search results to navigate
to its dedicated page.

& Search results for "SenseGlove’ X +

< C [0 % hitps//www.fab.com/search?q=SenseGlove

@ 4 ":,' Discover My Library Publish Q. SenseGlove

Products Creators

2D Assets 3D Models Animations Atlases Brushes Decals Education & Tutorials

Material & Textures Smart Assets Tools & Plugins VFX

Sort by: Relevance v

The SenseGlove Unreal Engine ...
Tools & Plugins

(] d

5. On the SenseGlove Unreal Engine Plugin landing page on Fab click the Download
button.

9/365

https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

& The SenseGlove Unreal Engine X + [m]

< C [%= https//www.fab.com/listings/62bcdd2a-0bb1-434-b7b8-c5e7c9313... & B "2 Ok evn &

@ 7 Discover My Library Publish Q_ Search E’ @ N.

A SenseGlove

_ The SenseGlove Unreal
Hold the virtual like : Engine Plugin

eny Tools & Plugins > Procedural Systems
it's real

Interact in VR naturally: get to feel the size, stiffness and resistance of virtual

No rating yet - Rate product

objects. Unlike controllers, SenseGlove allows you to hold, push, touch,

connect and squeeze the virtual like it is real

© You own this item

Download View in My Library

Included formats

(.

6. If this is your first download from Fab, you will need to agree to the Fab End
User License Agreement (EULA) before proceeding.

Last updated: October 1st, 2024
Fab End User License Agreement

This Fab End User License Agreement (*Agreement") applies to your use of certain digital assets
(“Content") made available through Epic's online digital asset marketplace (the "Epic Marketplace"). This
Agreement is a legal agreement between you and the Content Licensor. By clicking to indicate your
acceptance of this Agreement you are agreeing to be bound by the terms of this Agreement.

When we say we are referring to the Epic entity for your region as defined in Section 9. When we
say "you," "your," or “"yourself," we mean you as an individual or the legal entity exercising rights under
this Agreement through you. When we say "Content Licensor," "we" or "us," we are referring to the party
granting you a limited license to the Content. Epic may not be the Content Licensor. See Section 1(b) for
how to identify the Content Licensor.

PLEASE READ THIS AGREEMENT CAREFULLY. IT CONTAINS A CLASS-ACTION WAIVER PROVISION. IF

YOU ACCEPT THIS AGREEMENT, YOU AND EPIC AGREE TO RESOLVE DISPUTES ONLY IN YOUR

INDIVIDUAL CAPACITIES AND NOT AS PART OF A CLASS ACTION (SEE SECTION 15(b)). YOU HAVE A

TIME-LIMITED RIGHT TO OPT OUT OF THIS WAIVER. BY AGREEING TO THE TERMS OF THIS

AGREEMENT, YOU ARE ALSO AGREEING TO CONTRACTUAL TERMS THAT WILL LIMIT SOME OF YOUR

LEGAL RIGHTS, INCLUDING A JURY WAIVER, A DISCLAIMER OF WARRANTY, AN EXCLUSION OF

CCERTAIN KINDS OF DAMAGES, AND A LIMITATION OF LIABILITY. 1ded formats

Buying Content Through an Epic Marketplace
1. MARKETPLACE CONTENT

Epic's Role in the Epic Marketplace. Epic and its affiliates or subsidiaries operate the Epic Marketplace
and may allow you to add Content to your library, either by purchasing the Content or by adding it to your
library at no charge (each time you add Content to your library, a "Transaction"). Your use of the Epic
Marketplace is subject to b and any supplemental terms
related to the Epic Marketplace that you have agreed to. This Agreement does not supersede, amend or
otherwise affect other agreements you may have with Epic.

b.Receiving a License to Content. When you complete a Transaction for Content, you are granted a
D I have read and agree to the Fab End User License Agreement*

Cancel

10/ 365

The SenseGlove Unreal Engine Handbook

7. After clicking Download, a pop-up will notify you that the plugin is available in
your Vault in the Epic Games Launcher, or the Fab UE5 Plugin.

Note
According to the Fab launch announcement:

The Fab integration in UEFN is undergoing maintenance and will be back online
shortly, and the Fab integration in the Unreal Engine 5 Editor is coming soon.

& The SenseGlove Unreal Engine X +

< C [N % https//www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313.. |2 | ®°

Download

The SenseGlove Unreal Engine Plugin

Tools & Plugins
Standard License [

Included formats

0 Unreal Engine files are available in your Vault in the Epic
Games Launcher, or the Fab UES Plugin.

8. Go back to the Epic Games Launcher, navigate to the Library tab, and in the
Fab Library section, clickthe Refresh Fab items button.

11 /365

https://www.unrealengine.com/en-US/blog/fab-epics-new-unified-content-marketplace-launches-today

The SenseGlove Unreal Engine Handbook

A] , Launch
Epic G a [s] vinmotion RealityCapture
@ P EENEE LB . L Unreal Engine 5.4.4 '

ENGINE VERSIONS 3

GITHUB SOURCE RELEASE NOTES © 2017 GiB

5,87 52| 5.4.4 5.5.0

HEE
Lo |- Cionen |- Cioncn |- CLoncn |-

Installed Plugi

Library

MY PROJECTS

No user projects found

Fab Library

Refresh the Fab items

Unreal Engine assets from your Fab Library. To see your complete Fab Library visit Fab.com

Filter by: Category v © 0,08

"ArchViz" Explorer [Blueprint] Array Helper [Blueprint] File Helper

NuLL3rr0Or m Create Project n [Install to Engine n Install to Engine '

9. Once the Fab library is refreshed and synchronized, use the Vault search box to

find the SenseGlove Unreal Engine Plugin. Clickthe Install to Engine button.

-0 X

; N N) Launch
Lib vinmotion RealityCapture
ibrary Al ptur Unreal Engine 5.4.4 '

GITHUB SOURCE RELEASE NOTES © 2017 GiB

55 72 57 4. 550

HEE
oo |- Cioven |-

stalled Plugi
Unreal Engine

MY PROJECTS

No user projects found

Fab Library

Unreal Engine assets from your Fab Library. To see your complete Fab Library visit Fab.com

Filter by: Category v © 0,08 ¥ SenseGlove|

The SenseGlove Unreal Engin

¥ cremmn

12 /365

The SenseGlove Unreal Engine Handbook

10. You'll be prompted to choose a compatible engine version. Select your desired
engine version from the list, then click Install.

Unreal Engine
MY PROJECTS

Install Plugin

Slot to add plugin to: 5.4+

Fab Library

Category

ove Unreal Engin

11. The Epic Games Launcher will show the plugin's download and installation
progress. Please wait for it to complete.

13/365

The SenseGlove Unreal Engine Handbook

A] . . Launch
Epic G Nev F Lib R (t
@ pic Games A ibrary A Unreal Engine 5.4.4

GITHUB SOURCE RELEASE NOTES © 20], B

58 2 7 5.4.4 5.5.0

Preview
o Cunen |- Cunen -

tall L s talle ug 1stalle gins nstall e
Unreal Engine

MY PROJECTS

No user projects found

Fab Library

Unreal Eng; asse om your Fab Library.

Filter by: Category v ¥ SenseGlove

The SenseGlove Unreal Engin

Ny)
e 3746 MB (12,0 MB/s)
H n x

NuLL3rrOr

12. While the download and installation are in progress, you can see the progress
in more details by clicking on the Downloads section on the sidebar.

14 /365

The SenseGlove Unreal Engine Handbook

Epic Games

THE SENSEGLOVE UNREAL ENGINE PLUGIN

INSTALLING
Library

Unreal Engine DOWNLOAD 369MB of 400MB
i S | 3.83MB/s

OPERATIONS

4 ° Downloads

¢ Settings

©°® NuLL3rOr

13. Once the download and installation are complete, verify its installation by
clicking Installed Plugins under the engine you've just installed it to. The
SenseGlove plugin should appear as installed among other currently installed
plugins.

15/ 365

The SenseGlove Unreal Engine Handbook

Library

Unreal Engine

- . Unreal Engine 5.4.4 Unreal Engine Plugins
MY PROJECTS

Installed

Quixel Bridge
5.4.0
The SenseGlove Unreal Engine Plugin
5.4.0
Fab Library _

Category

ve Unreal Engin

14. One last confirmation could be navigating to
YourEngineInstallationPath/Engine/Plugins/Marketplace directory.The
SenseGlove Unreal Engine Plugin source and binaries can be found inside this
directory. This is especially useful in case one desires to copy the plugin for

example to their own project's source code to run it at the project level instead
of running it at the engine level.

16 /365

The SenseGlove Unreal Engine Handbook

n ! B = | C\OPTUE 5.4\Engine\Plugins\Marketplace

Home Share View

BB =R B

Move Copy Delete Rename ew Properties X
to~ folder - B History
Open

v 4 [| This PC > WIN10 (C) OPT » UES54 Engine Plugins Marketplace

Bl Name Date modified Type
»# Quick access
[| Developer 02/09/2024 17:59 File folder

il Desktop
B SenseGlove 23/10/2024 13:06 File folder

Downloads
E Documents
B Pictures

M This PC
P 3D Objects
il Desktop
ﬁ Documents
Downloads
Music
B Pictures
&5 Videos
i WINTO (C)
W Network

&, Linux

2items |

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

17 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

Plugin Installation via Microsoft Azure
DevOps Repositories

While plugin installation via the Epic Games Launcher is the most convenient method
for most users to obtain and install the latest version of the SenseGlove Unreal
Engine Plugin via Fab, there might be valid reasons to instead download and install
the plugin directly from the SenseGlove Unreal Engine Plugin Microsoft Azure
DevOps Repository. These reasons may include:

e Downloading an older version that is no longer available on Fab.

e Downloading a recent version that has been submitted to Fab, but is still
awaiting approval and publication by the Fab Team.

e Downloading an under-development, unstable release of the plugin for testing

purposes.
e Or, any other specific needs that require direct access to the repository.

Nonetheless, here is a step-by-step guide to downloading and installing the plugin
from the Microsoft Azure DevOps Repositories.

Download a Specific Version

To download a specific version of the plugin, follow these steps:

1. Navigate to the the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps
Repository.

2. Locate the branch dropdown menu at the top of the page, just below the
navigation bar, and next to the Copy to clipboard icon. There you'll find a
dropdown menu. By default, it usually selects the master branch.

18 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://www.fab.com/
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBmaster&_a=contents

The SenseGlove Unreal Engine Handbook

Azure DevOps SenseGlove SenseGlove-Unreal Repos Files ® SenseGlove-Unreal v
SenseGlove-Unreal =k & master v £/ Type tofind afile or folder...
Q_ Filter branches
Overview
Branches Tags
Boards
~ & master Default
Repos Mine
¥ 51 *
Files
¥ 52 *
Commits ® 53 * Commits
@5 Pushes ¥ 54 0 ¥ c8cal69f adjust Config/FilterPlugin.ini in order to conform to
¥ dev *
§ Branches @deg86b50 make the allbreaker assets compatible with ue 5.1+
¥ dev-mdbook-epub
O Tags ~n R ffe2526c initial public release Mamadou Babaei
Pull requests + New branch
& q ©21d92a3 fix a bug where the sgpawn right-hand grab collide
O Advanced Security
O clang-format Nov 2, 2022 ffe2526c initial public release Mamadou Babaei
q Pipelines
[.editorconfig Nov 2, 2022 ffe2526c initial public release Mamadou Babaei
Test Plans
A O gitattributes Nov 4, 2022 5dababdd move the third party directory to source in order to
! Artifacts . SN .)
O .gitignore Feb7, 2023 ffdb3657 fix gitignore rules for the Source/ThirdParty directo

3. Use the dropdown menu to choose a desired branch containing the source
code for a specific version of Unreal Engine or a specific release of the plugin
marked with a release tag.

G Azure DevOps SenseGlove SenseGlove-Unreal Repos Files @ SenseGlove-Unreal v
. SenseGlove-Unreal + § master v B/ Typetofind afile or folder...
Q. Filter tags
ﬂ Qverview
Branches Tags
% Boards
Q@ v2.0.1
Repos @ v202
| & Files @203
QO v2.04
© Commits Commits
O v2.05
25 Pushes O v2.06 c8cal69f adjust Config/FilterPlugin.ini in order to conform to
& Branches G w207 0de86b58 make the allbreaker assets compatible with ue 5.1+
o T O v2.08 a
ags S T £f82526¢ initial public release Mamadou Babaei
Pull requests
£ il Source Jul 15 €21d92a3 fix a bug where the sgpawn right-hand grab collide:
O Advanced Security
B .clang-format Nov 2, 2022 ££@82526¢ initial public release Mamadou Babaei
q Pipelines
O .editorconfig Nov 2, 2022 ££02526¢ initial public release Mamadou Babaei
A Test Plans i X X X
O gitattributes Nov 4, 2022 5da6abad move the third party directory to source in order to
! Artifacts 0 git SN . .
.gitignore Feb 7, 2023 ffdb3657 fix gitignore rules for the Source/ThirdParty director
Mi CHANGELOG.md Jul 15 2dc44999 bump the plugin version to v2.0.8 Mamadou Babaei

19 /365

The SenseGlove Unreal Engine Handbook

Note

A branch named with engine version numbers, such as 5.4, 5.3, etc., ususally
contains the source code for the latest stable version of the plugin compatible
with that specific Unreal Engine version, provided that version is still supported.
For a comprehensive list of supported engine versions please refer to the
Platform Support Matrix.

As a general rule of thumb, the master branch should work with any supported
Unreal Engine version. This is because it does not specify any Engineversion
inside the main .uplugin file. However, there may be rare exceptions where it
does not work due to breaking changes between engine versions that the plugin
cannot accommodate. One such a instance occurred with version 2.e.x ofthe
plugin, where some breaking changes prevented UE 5.1 from sharing similar
code with versions 5.2+. For this reason, it is generally recommended to select
a branch specific to the version of the Unreal Engine you intend to use with the

plugin.

The same principles that apply to the master branch also apply to the dev
branch, which will discuss later.

We will also cover how to obtain a working version from a tag for scenarios like
the one mentioned above.

4. After selecting your desired branch or tag, click on the kebab menu (three

vertical dots) located at the top right of the screen and choose Download as
Zip to obtain the source code for that branch or tag.

20/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare

The SenseGlove Unreal Engine Handbook

‘:j Azure DevOps SenseGlove SenseGlove-Unreal / Repos Files @ SenseGlove-Unreal v = 6 o & @

. SenseGlove-Unreal =F 54 v 71/ Type to find a file or folder...
ﬂ Overview Files i Set up build © Clone
Contents History ®> Fork
% Boards
+ New >
Repes @ Youupdated 3° dev 4h T
ou updates ev4h ago T Upload file(s)
a Files
L Download as Zip
9 @i Name T Last change Commits
& Pushes Config Nov 30, 2022 8ca169f adjust Config/FilterPlugin.ini in order to conform to ...
& Branches Content May 29 67260917 make the allbreaker assets compatible with ue 5.1+ ...
& Tags Resources Nov 2, 2022 ££02526¢ initial public release Mamadou Babaci
£ Pull requests
. Source Jul 15 47affeas fix a bug where the sgpawn right-hand grab collider...
U Advanced Security
O clang-format Nov 2, 2022 ff@2526¢ initial public release Mamadou Babaei
* Pipelines
D editorconfig Nov 2, 2022 ££82526¢ initial public release Mamadou Babaei
Test Plans
A O gitattributes Nov 4, 2022 5daéabad move the third party directory to source in order to ...
l Avrtifacts O qit . X
gitignore Feb 7, 2023 ffdh3657 fix gitignore rules for the Source/ThirdParty director...
% Project settings & > M CHANGELOG.md Jul 15 565a2e4b bump the plugin version to v2.0.8 Mamadou Babasi

Download a Specific Version for a Specifc Unreal
Engine Version

As mentioned earlier, due to breaking changes between Unreal Engine versions, it
might not be feasible to share the same source code across different Unreal Engine
versions. Since release tags are created from the master branch, they contain code
compatible only with the latest version of Unreal Engine. Therefore, the instructions
for downloading a specific version from a release tag might not work with some
Unreal Engine versions. In such cases, you can use an alternative approach:

1. First, choose the appropriate branch for your desired Unreal Engine version
from the branch dropdown menu, as discussed earlier. Then navigate to the
History tab.

21/365

The SenseGlove Unreal Engine Handbook

‘:j Azure DevOps SenseGlove SenseGlove-Unreal / Repos Files @ SenseGlove-Unreal v = 6 o & @

. SenseGlove-Unreal =F &51 v £/ Type to find afile or folder...
i i i]
ﬂ Overview Files ki Set up build @ Clone
Contents History T 7

% Boards

Repos

= @ Youupdated ¥ dev 4h ago Create a pull request X
a Files

9 Commits Full history ~ & Author From date B To date B X
& Pushes

Graph Commit Pull Request Status
& Branches
bump the plugin version to v2.0.2
& Tags 2fcefobe @ Mamadou Babaei Apr 25 at 12:34 PM

bump the plugin version to v2.0.1

£3 pul requests
eeb287fc . Mamadou Babaei Apr 15 at 2:56 PM

U Advanced Security

* Pipelines
A Test Plans
l Avrtifacts

8 Project settings &« »

do not call FSGHandLayer::ResetCalibration on every backend initialization
8bdaedad ° Mamadou Babaei Apr 10 at 4:38 PM

only instantiate the connected glove once instead of recreating and destr...
cbagfels ‘ Mamadou Babaei Apr 12 at 6:56 AM

bump senseglove libraries to v2.102.0-35d4de3f
3491fb7b ‘ Mamadou Babaei Apr 10 at 4:21 PM

fix the wrong header file description sections for the header files
d777be02 @) Mamadou Babaei Apr 8 at 8:24 PM

——————o——o——o——o

2. Look via the commit history for a commit message that says bump the plugin
version to vX.X.X as all releases are finalized with this exact commit message
and the plugin version. Next, click on the commit message for the version you
are looking for.

3. Once you've selected the correct commit, click on the Browse Files button
next to the kebab menu (three vertical dots) at the top right of the screen.

22 /365

The SenseGlove Unreal Engine Handbook

Azure DevOps SenseGlove / SenseGlove-Unreal / Repos Commits /@ SenseGlove-Unreal v = 0 0 & @

SenseGlove-Unreal +
bump the plugin version to v2.0.2 Browse Files
Overview 2fcofobo O @) Mamadou Babaei committed Apr 25 % 5.1
Files Details
Boards
Repos Parent 1 — This commit = Filter 3 changed files g8 Inline v e
5‘3 Files
© SenseGlove-Unreal CHANGELOGmd +12
.o .m + -
| 9 Commits e /CHANGELOG.md View
Ml CHANGELOG.md
& Pushes
Ml README.md
% Branches 5 5 The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
0 SenseGlove.uplugin 6 6 and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.htnl).
707
O Tags 8 & ## [2.0.2] - 2024-04-25
9
10+ This is a patch release with no code changes.
£3 pull requests 11 +
12+ ### Added
. 13+
O Advanced Security 14 % - Introduce official Unreal Engine 5.4 support to the Unreal Engine Marketplace.
15+
- 16 + ### Changed
q Pipelines 17 +
18+ - Updated the Platform Support Matrix with the latest changes. This is the last release to suppor
19+
A Test Plans 8 28 #4 [2.0.1] - 2024-04-15
9 21
18 22 This is a bugfix release.
! Avrtifacts
Project settings «

4.You should now be in the Content tab, with the branch dropdown menu
displaying the commit hash instead of a branch name or tag. Click on the kebab
menu (three vertical dots) again, and select Download as zip . This will give you
a zip file containing the exact release you need, compatible with your chosen
Unreal Engine version.

G Azure DevOps SenseGlove SenseGlove-Unreal Repos Files @ SenseGlove-Unreal v = 0 o & @
@ senseciove-unreal 4+ & 26c0fob0 & / Typetofind afile or folder..
ﬂ Overview Files @ clone
Contents History & Fork
“ Boards
+ New >
Repes ® Youupdated ¥ dev 4h ago T Upload file(s)
Files
L Download as Zip
& Commits Name T Last change Commits
Pushes Config Nov 30, 2022 63c81ffb adjust Config/FilterPlugin.ini in order to conform to ...
& Branches Content Mar 19 411¢1C3F integrate the virtual hand mesh from allbreaker ..
TEge Resources Nov 2, 2022 ff82526¢ initial public release Mamadou Babaei
Pull it
& Py =S Source Apr 10 8bdaeda9 do not call FSGHandLayer:ResetCalibration on every..
O Advanced Security
O clang-format Nov 2, 2022 ££82526¢ initial public release Mamadou Babaei
q Pipelines
O editorconfig Nov 2, 2022 ff@2526c¢ initial public release Mamadou Babaei
A Test Plans s i
0 gitattributes Nov 4, 2022 5daéabad move the third party directory to source in order to ...
B Avifacts B gitignore Feb 7, 2023 ebsdbads fix gitignore rules for the Source/ThirdParty director..
@ Project settings &« » ML CHANGELOG.md Apr 25 2fcefebe bump the plugin version to v2.0.2 Mamadou Babaei

23/365

The SenseGlove Unreal Engine Handbook

Download the Bleeding-edge Development Branch

Caution

The dev branchis an active development branch that is constant and ongoing
changes. As a result, the code on this branch is primarily untested and
therefore not production-ready. It may not even compile successfully or may
lack comprehensive documentation. For any serious development, it is generally
recommended to use a stable release of the plugin. The dev branch is publicly
accessible to give you a preview of upcoming features and for trial purposes
only.

The most up-to-date documentation for the dev branch can usually be found at:
at: https://unreal.dev.senseglove.com/next.

Downloading the dev branch is as easy as choosing the dev branch from the
branch dropdown menu (as discussed earlier) and then choosing Download as Zip
from the kebab menu (three vertical dots).

‘:j Azure DevOps SenseGlove SenseGlove-Unreal Repos Files © SenseGlove-Unreal v = 0 0 & @

. SenseGlove-Unreal -r & dev v B/ Type tofind afile or folder...
ﬂ Overview Files i Set up build © Clone
Contents History & Fork
% Boards
+ New >
@ revos © Youupdated ¥ devah x
Ou updatex evahago T Upload file(s)
a Files
L Download as Zip
¢ Commits Name 1 Last change Commits
& Pushes Config Tuesday 2b124667 remove the changelog.md file from filterplugin list a..
& Branches Content Jun 4 d02838b2 removed the allbreaker virtual hand model as it's no...
& Tags .
Handbook 4h ago f2beaafa add an important alert Mamadou Babaei
Pull t
€3 Puilrequests Packager Tuesday fe843ea6 bump the SenseGlove Unreal Engine Marketplace Pa...
O Advanced Security
Resources Nov 2, 2022 ff@2526c¢ initial public release Mamadou Babaei
* Pipelines
Source Sunday 33649f10 replace all bitfield uproperties with booleans Mama..
Test Plans
A B clang-format Nov 2, 2022 ff82526¢ initial public release Mamadou Babaei
. it O editorconfig Nov 2, 2022 ffe2526c¢ initial public release Mamadou Babaei
& Project settings & » O gitattributes Jul 25 £3fabedd merge the pack branch into the plugin's source and ..

24 /365

https://unreal.dev.senseglove.com/next
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBdev&_a=contents

The SenseGlove Unreal Engine Handbook

Installation

Once you have obtained the desired plugin version compatible with the Unreal
Engine version you have in mind using any of the methods mentioned above, it's
time to build and install the plugin. There are two ways to install the SenseGlove

Unreal Engine Plugin, one is at the engine level, and the other is per project.

e Engine-level installation: this method makes the plugin accessible to any
project within that Unreal Engine version.

e Per-project installation: this method makes the plugin accessible only to a
specific project.

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

Engine-level installation

Per-project installation

1. Locate your existing C++ or Blueprint project, or create a new project from
scratch.
Important

Before proceeding, make sure your project's Unreal Editor is closed, and you do
not have your project open in your C++ IDE to avoid any issues.

2. Inside your project's root directory create a new Plugins directory if you don't
have one already.

25/365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

3.Inside the pPlugins directory create a new directory named SenseGlove .
4, Extract the content of your downloaded zip file into the SsenseGlove directory.

5. Remove any directories or files that are only meant for use by the SenseGlove
Unreal Engine Plugin maintainers. These are not part of the distributed plugin
package and are not required by either Unreal Engine or the SenseGlove Unreal
Engine Plugin to function correctly.

The mandatory files and folders to stay are as follows:

Config

Content

Resources

Source
SenseGlove.uplugin

Anything else can be safely removed. For example, these files and folders can be
safely deleted:

Handbook
Packager
.clang-format
.editorconfig
.gitattributes
.gitignore
README .md

6. Ensure your project has the correct structure.

For a Blueprint-only project, it should look something like this:

26 /365

The SenseGlove Unreal Engine Handbook

MyBlueprintProject

— Confiig

— Content

— Plugins

I— SenseGlove

— Confiig
— Content
— Resources
— SenseGlove.uplugin
— Source

—— MyBlueprintProject.uproject

For a C++ project, the structure should look like this:

271365

The SenseGlove Unreal Engine Handbook

MyCppProject

— Confiig

— Content

— Plugins

L—— SenseGlove

— Confiig
— Content
— Resources
— SenseGlove.uplugin
— Source

— Source

—— MyCppProject.uproject

Tip

If you are keeping your project under Git and Git LFS, consider keeping the
.gitignore and .gitattributes as they help keep irrelevant files out of the
remote repository, or manage binary blobs efficiently.

7. OK, now it's time to build the plugin.

Note

For Linux build instructions see the Linux Build Instructions section.
For a Blueprint-only project, on Microsoft Windows simply double-clicking the

project's .uproject file should present you with a pop-up informing you that some
binary modules are missing.

28 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html#linux-build-instructions

The SenseGlove Unreal Engine Handbook

Missing VirtualHandBP Modules X

The following modules are missing or built with a different engine version:

SenseGlove
SenseGloveAndroid
SenseGloveBackend
SenseGloveBackendKismet
SenseGloveBuildHacks
SenseGloveConnect
SenseGloveConnectImpl
SenseGloveConnectiKismet
SenseGloveCore
SenseGloveCoreImpl
SenseGloveCoreKismet
SenseGloveDebug
SenseGloveDebugKismet
SenseGloveEditor
SenseGlovelnterop

(48 others, see log for details)

Would you like to rebuild them now?

Yes No

After confirming, the build process will start automatically, and a dialog indicating
the build progress will be shown:

29 /365

The SenseGlove Unreal Engine Handbook

M Unreal Engine X

Starting build...

Hide log
- —

[199/455)] Compile [x64] Module.SenseCGlowvelndroid. cpp ~
[200/455] Link [x64] UnrealEditor-SenseGloveCorelImpl.dll
Creating library C:'\Users\mamadou\DesktophideviVirtualHandEP®
[201/455] Compile [x64] SGGloveTracker.cpp
[Z02/455] Compile [x64] SenseCGlovelndroid.cpp
[203/455) Link ([x64] UnrealEditor-SenseCGloveDebug.dll
Creating library C:'\WUsersimamadoui\DesktophdeviVirtualHandBP®

Once finished successfully, the project will be loaded.

Note

Sometimes, due to an esoteric bug in some versions of Unreal Engine, the build
process for Blueprint-only projects may immediately fail after choosing Yes in
the Missing Modules dialog. If this happens, one workaround would be to try to
build the plugin inside a temporary C++ project, then copy the
Plugins/SenseGlove folder containing the binaries, from the C++ project to your
Blueprint project and then try to reopen the project again.

For C++ projects, on Microsoft Windows, right-click on your C++ .uproject file and
choose Generate Visual Studio project files:

30/365

The SenseGlove Unreal Engine Handbook

DerivedDataCache
Intermediate

Plugins
Open

Saved
Launch game

Source
_ Generate Visual Studio project files
[vsconfig

— Switch Unreal Engine version...
() VirtualHandCpp.uprc =

Edit with Notepad++

Edit with HHD Hex Editor Neo
Edit with CLion

Edit with JetBrains Rider

Edit with RustRover

7-Zip

== Scan with Microsoft Defender...

A dialog will pop up shows you the progress of generating the Visual Studio project
files:

(M Unreal Engine X

Generating project files... T

Punning UnrealBuildTool: dotnet "..%..%“Engine\Binaries \DotNET\1 A
Log file: C:\Users’mamadou’Desktop’deviVirtualHandCpp" Saved’ Lo
Log file: C:\Usersi\mamadou\AppData’\Local\UnrealBuildTool\Log_ @]

Generating VisualStudio project files:

Discovering modules, targets and source code for project...
Binding IntelliSense data. ..

< >

31/365

The SenseGlove Unreal Engine Handbook

Once the project files are generated, open up the C++ project in your preferred C++
IDE and build the project. After this, the project can be loaded in the Unreal Editor.

8. Once the plugin has been built successfully, ensure the SenseGlove Unreal
Engine is enabled and verify the plugin version matches the expected version.

Linux Build Instructions

When building the SenseGlove Unreal Engine Plugin on Linux, you won't encounter
the Missing Modules dialog that appears on Microsoft Windows. Instead, examining
the Unreal Editor logs reveals that the Unreal Editor automatically chooses No in
response to the Would you like to rebuild them now? question asthe No s
implied states.

32/365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject

LogLinux: Warning: MessageBox: The following modules are missing or built
with a different engine version:

SenseGlove
SenseGloveAndro-id
SenseGloveBackend
SenseGloveBackendKismet
SenseGloveBuildHacks
SenseGloveConnect
SenseGloveConnectImpl
SenseGloveConnectKismet
SenseGloveCore
SenseGloveCoreImpl
SenseGloveCoreKismet
SenseGloveDebug
SenseGloveDebugKismet
SenseGloveEditor
SenseGloveInterop

(+8 others, see log for details)

Would you like to rebuild them now?: Missing MyBlueprintProject Modules: No
is 1dimplied.

LogCore: Engine exit requested (reason: EngineExit() was called)

LogExit: Preparing to exit.

LogPakFile: Destroying PakPlatformFile

LogExit: Exiting.

LogInit: Tearing down SDL.

Exiting abnormally (error code: 1)

If your Unreal Engine installation on Linux was obtained from the GitHub Sourcesy
you can generate the project files using the following command:

$ /path/to/UnrealEngine/GenerateProjectFiles.sh \
/path/to/MyProject/MyProject.uproject \
-editor -game -makefile

However, if you are using a prebuilt Linux version of Unreal Engine, the main
GenerateProjectFiles.sh script at the engine root does not exists. Instead, we have
to invoke the underlying GenerateProjectFiles.sh script located elsewhere. This is a
different script which shares the same name and is also present in the GitHub

33/365

https://github.com/EpicGames/UnrealEngine
https://www.unrealengine.com/en-US/linux

The SenseGlove Unreal Engine Handbook

sources. The main GenerateProjectFiles.sh script at the engine root is actually a
wrapper around this script.

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\

/path/to/MyProject/MyProject.uproject \

-editor -game -makefile

Still, running the any of the above commands on a Blueprint project results in the
following error:

$

/path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject \
-editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK

Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt

Project file formats specified via the command line will be [ignored when
generating

project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" 2>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
<ProjectFileGenerator>
<Format>Make</Format>
</ProjectFileGenerator>
</Configuration>

Generating Make project files:

Discovering modules, targets and source code for project...

Total execution time: 0.35 seconds

Directory '/path/to/MyBlueprintProject/MyBlueprintProject' is missing
'Source' folder.

For a C++ project, however, the project files will generate without any issues:

34 /365

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\

/path/to/MyCppProject/MyCppProject.uproject \

-editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK

Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt

Project file formats specified via the command line will be ignored when
generating

project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
<ProjectFileGenerator>
<Format>Make</Format>
</ProjectFileGenerator>
</Configuration>

Generating Make project files:
Discovering modules, targets and source code for project...
Generating data for project -{indexing... 100%

Generating QueryTargets data for editor...
Total execution time: 2.98 seconds

So, the workaround for Blueprint projects is to build the plugin inside a C++ project

and then copy the pPlugin/SenseGlove directory, which contains the built binary
modules, to the corresponding directory in your Blueprint project.

35/365

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\
/path/to/MyCppProject/MyCppProject.uproject \
-editor -game -makefile
$ make MyCppProjectEditor -C /path/to/MyCppProject/
$ cp -vr \
/path/to/MyCppProject/Plugins/SenseGlove \
/path/to/MyBlueprintProject/Plugins/
$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject

36 /365

The SenseGlove Unreal Engine Handbook

Enabling The SenseGlove Unreal Engine
Plugin and Veirfying the Plugin Version

Enabling the SenseGlove Unreal Engine Plugin is a very simple and straightforward
procedure. Furthermore, checking which version of the plugin your project is using
may sometimes come in handy, especially if you have multiple versions of the plugin
installed on different engine versions or various projects.

1. Inside the Unreal Editor for your project, select the Plugins from the Edit
menu.

File | Edit | Window Tools Build Select Actor Help

["HN.)

h'Q

) Undo History

+t. Editor Preferences...
W% Project Settings...
Plugins

2. 0Once the plugin window/tab is open, start typing SenseGlove until you're able
to spot the SenseGlove Unreal Engine Plugin. There you could find the plugin

37 /365

The SenseGlove Unreal Engine Handbook

version, and other useful resources, such as the documentation website or
support contact.

/7 N File Edit Window Tools Help
1))
Oveview & Plugins
-+ Add X SenseGlove L+ Settings

All Plugins
@ ALL PLUGINS

Version 2.1.0
PROJECT Integrating the R haptic controller into Unreal Engine SenseGlove x

Virtual Reality # Edit & Package & Documentation @ Support

INSTALLED

Codecs

BUILT-IN

2D

3. If the plugin is not enabled, it does not have the checkmark next to i

,- N\ File Edit Window Tools Help
A1) i
Oveview & Plugins
< Add X SenseGlove {:} Settings

All Plugins

&= ALL PLUGINS

Version 2.1.0
PROJECT Integrating the E haptic controller into Unreal Engine SenseGlove 5

& Y /
Virtual Reality # Edit & Package 4 Documentation @ Support

INSTALLED

Codecs

BUILT-IN

2D

Accessibility
Advertising

Al

Analytics

Android

Android Background Service
Animation

Audio

Augmented Reality
BackgroundHTTP
BlendSpace
Blueprints

Build Distribution
Cameras

Codecs

4. It should be easy to click the checkmark and enable the plugin if that's not the
case. Once the plugin is enabled, the Unreal Editor asks to be restarted. Click on
the Restart Now button as this is mandatory to activate the plugin inside your

project.

38/365

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(A1)

Oveview % Plugins

+ Add X SenseGlove ¢ Settings

All Plugins
@ ALL PLUGINS

Version 2.1.0
PROJECT Integrating the g haptic controller into Unreal Engine SenseGlove #

Virtual Reality 2 Edit @& Package & Documentation @ Support

INSTALLED
Codecs

BUILT-IN

Analytics

Android

Android Background Service
Animation

Audio

Augmented Reality
BackgroundHTTP
BlendSpace

Blueprints

Build Distribution

Can;eras A You must restart Unreal Editor for your changes to take effect Restart Now
Codecs

5. The source code for the plugin might be required to be rebuilt depending on
how you have obtained and installed the plugin, usually the Unreal Editor lets
you know and does this automatically. If it's required to build the plugin source,
and it fails to do so, it usually suggests an alternative approach such as opening
your regenerating the project files and rebuilding the project inside a C++ IDE.
Once this is done the Editor for your projects re-opens and you can follow steps
1 and 2 in order to verify the plugin's version and availability inside your
project.

Video Tutorial

A video demonstrating the same instructions in more detail is also available on the
SenseGlove YouTube channel.

39/365

https://youtu.be/iF0JU2kpNhw
https://www.youtube.com/@senseglove4021
https://www.youtube.com/@senseglove4021

The SenseGlove Unreal Engine Handbook

SenseGlove UE Tutorial: Finding your Plugin Version

40/ 365

https://www.youtube.com/watch?v=iF0JU2kpNhw

The SenseGlove Unreal Engine Handbook

SenseCom

SenseCom (short for SenseGlove Communications) is a background program that
runs alongside your Unreal Engine application. Its primary function is to discover,
and connect to SenseGlove devices on your system, exchanging data with them,
much like a "SteamVR for Haptic Gloves." The SenseGlove Unreal Engine Plugin relies
on SenseCom to communicate with any SenseGlove hardware.

Note

SenseCom is required only for communication on Windows or Linux. For
standalone Android devices, the communication functionality is embedded
directly into your application.

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

41/ 365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

SenseCom on GNU/Linux

Follow these steps to quickly set up and run SenseCom on GNU/Linux:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type (/)to

<> Code () Issues 5 {9 Pullrequests &) Discussions ® Actions [Projects 1 0 wiki © Security |~ Insi

SenseCom Public <7 EditPins v < Watch

¥ main ~ ¥ 1Branch © 2 Tags) Go to file Add file ~ <> Code ~

Codespaces
& MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI

BB Linux
B Wi _ o git@github.com: Adjuvo/SenseCom.git
n S v16.

SH key.
[9 LICENSE

[README.md h mit %] Open with GitHub Desktop

(5 ReADMEmd.bak Open with Visual Studio

[I1 README &8 MIT license

[%) Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer.
$ unzip SenseCom-main.zip -d /some/path/

3. Navigate to the SenseCom_Linux_Latest folder containing the SenseCom
binaries for GNU/Linux:

$ cd /some/path/SenseCom-main/Linux/SenseCom_Linux_Latest/

42 /365

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

4, List the files and check the executable permissions for the main SenseCom
binary, SenseCom.x86_64 :

$ 1s -ahl

total 20M

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 .

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 ..

drwxr-xr-x 7 mamadou mamadou 34 Apr 10 11:24 SenseCom_Data
-rw-r--r-- 1 mamadou mamadou 15K Apr 10 11:24 SenseCom.x86_64
-rw-r—-—-r-- 1 mamadou mamadou 33M Apr 10 11:24 UnityPlayer.so

5. As seen above the senseCom.x86_64 binary does not have the executable
permission. Run the following command to set the executable permission for
all users:

$ chmod a+x SenseCom.x86_64

6. Veirfy the executable permission has been set on SenseCom.x86_64 :

$ 1s -1 SenseCom.x86_64

-rwxr-xr-x 1 mamadou mamadou 14720 Apr 10 11:24 SenseCom.x86_64

7. Time to run the SenseCom executable:

43/ 365

The SenseGlove Unreal Engine Handbook
$./SenseCom.x86_64

[UnityMemory] Configuration Parameters - Can be set up in boot.config
"memorysetup-bucket-allocator-granularity=16"
"memorysetup-bucket-allocator-bucket-count=8"
"memorysetup-bucket-allocator-block-size=4194304"
"memorysetup-bucket-allocator-block-count=1"
"memorysetup-main-allocator-block-size=16777216"
"memorysetup-thread-allocator-block-size=16777216"
"memorysetup-gfx-main-allocator-block-size=16777216"
"memorysetup-gfx-thread-allocator-block-size=16777216"
"memorysetup-cache-allocator-block-size=4194304"
"memorysetup-typetree-allocator-block-size=2097152"
"memorysetup-profiler-bucket-allocator-granularity=16"
"memorysetup-profiler-bucket-allocator-bucket-count=8"
"memorysetup-profiler-bucket-allocator-block-size=4194304"
"memorysetup-profiler-bucket-allocator-block-count=1"
"memorysetup-profiler-allocator-block-size=16777216"
"memorysetup-profiler-editor-allocator-block-size=1048576"
"memorysetup-temp-allocator-size-main=4194304"
"memorysetup-job-temp-allocator-block-size=2097152"
"memorysetup-job-temp-allocator-block-size-background=1048576"
"memorysetup-job-temp-allocator-reduction-small-platforms=262144"
"memorysetup-temp-allocator-size-background-worker=32768"
"memorysetup-temp-allocator-size-job-worker=262144"
"memorysetup-temp-allocator-size-preload-manager=262144"
"memorysetup-temp-allocator-size-nav-mesh-worker=65536"
"memorysetup-temp-allocator-size-audio-worker=65536"
"memorysetup-temp-allocator-size-cloud-worker=32768"
"memorysetup-temp-allocator-size-gfx=262144"

Loading 1in SingleInstance mode

8. If you have already paired any glove with your system, SenseCom should
recognize and connect to your glove(s) shortly. If not, please follow the
instructions on How to connect to Nova gloves using Blueman Bluetooth
Manager or How to connect to Nova gloves using Command-line.

44 | 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/command-line.html

The SenseGlove Unreal Engine Handbook

== Calibrate

)

Nova-1217-L Right Hand

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

45 /365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

Connect to Nova gloves using Blueman
Bluetooth Manager

Follow these steps to pair a Nova glove with your PC on GNU/Linux usng the
Blueman Bluetooth Manager:

1. Install Blueman Bluetooth Manager on your Linux distribution using the
appropriate package manager:

ETS

Gentoo
$ emerge -atuv net-wireless/blueman

Arch, Manjaro
$ sudo pacman -S blueman

Cent0S, Fedora, AlmalLinux, Rocky Linux
$ sudo dnf install blueman

CentOS/RHEL
$ sudo yum install epel-release
$ sudo yum install blueman

Debian, Ubuntu
$ sudo apt install blueman

openSUSE
sudo zypper tinstall blueman

Solus
$ sudo eopkg install blueman

Void Linux
$ sudo xbps-install -S blueman

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

46 / 365

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

The SenseGlove Unreal Engine Handbook

2. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

3. Make sure the glove is turned on.

4, Start the Blueman Bluetooth Manager and verify you have a recent version
installed by selecting Help > About from the application's menu.

blueman-manager

2.4.2

Blueman is a GTK+ Bluetooth manager

https://aithub.com/blueman-project/blueman

Copyright € D8 Valmantas Paliksa
Copyright 8 Tadas Dallyda
Copyright © 2008 2024 blueman project

Credits Close

5. If you don't see your glove, click the search button on the toolbar or select
Adapter > Search from the application's menu to look for new Bluetooth

devices.

47 /365

"§ Heaaset
' 38:18:4C:E9:69:7A

-~ Bedroom

martphone

D OnePlus 8 Pro
: ~:17:CF:1D:35:37

- [TV] Samsung AU

AOD7 173576114 :

* Nova 2 0667-L
Misc

Important

The SenseGlove Unreal Engine Handbook

Before starting the search operation, ensure that your PC's Bluetooth controller
is turned on by verifying its status on the right side of the toolbar next to the
Bluetooth logo. If disabled, the Search button will be grayed out.

48 /365

- De

:81:32

D OnePlus 8 Pro

ne

-~ LE_WH-1000XM3
‘ Headset

" 38:18:4C:E9:69:7A

The SenseGlove Unreal Engine Handbook

$

Click to disable.

6. A progress bar will appear on the application's status bar. If a new device is
found, it will be listed in the main device list area.

49 /365

The SenseGlove Unreal Engine Handbook

Adapter Device View

V -
-~ LE_WH-1000XM3
a J Headset

38:18:4C:E9:69:7A

-~ Bedroom

@ B Headset
"~ 4F:9D:F8:20:43:F3

>~ ilLamp

@ O Headset
YT (9:A3:07:41:91:B0

[TV] UE4015500

. video display and loudspeaker

CC:B1:1A:2D:A8:A4
Ej OnePlus 8 Pro

Smartphone

5C:17:CF:1D:35:37
[TV] Samsung AU7100 75 TV

. Video display and loudspeaker

A@:D7:F3:76:14:51

Nova 2 0667-L
* Miscellaneous
B8:D6:1A:BA:81:32

NOVA-1217-L

Uncategorized

94:3C:C6:47:65:72
A~ B831.99 KB 3.00 B/s ¥v3.81 MB 3.00 B/s ® B
7.0nce the glove is found, click on it to select it.
8. Either right-click on the device, or go to the Device menu, then choose Pair.

9. Blueman will prompt you to pair the glove with a notification. Click Confirm to
proceed.

EUS Mamadou B

* Bluetooth

Pairing request for:
NOVA-1217-L
(94:3C:CH:47:65:72)
Confirm value for
authentication: 500875

confirm| Deny

50/ 365

The SenseGlove Unreal Engine Handbook

9. After pairing, either right-click on the device again, or go to the Device menu,
then choose Trust.

10. If everything has been successful, the key icon indicates successful pairing, and
the checkmark confirms the device is trusted.

te : ew Help
Q, search v -
>~ LE_WH-1000XM3
§ Head
' 38:18:4C:E9:69:7A
=~ Bedroom

NOVA—1217—L
Uncategorized

94:3C:(C6:47:65:72

11. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using Blueman Bluetooth Manager.

51/365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/
https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow

The SenseGlove Unreal Engine Handbook

Connecting SenseGlove Nova Glove to Linux using Bluema...

52 /365

https://www.youtube.com/watch?v=f34ofFkx_Ow

The SenseGlove Unreal Engine Handbook

Connect to Nova gloves using
Command-line

Follow these steps to pair a Nova glove to your PC on GNU/Linux usng command-line
and Bluez:

1. Some Linux distributions include BlueZ in their default installation. If yours
doesn't, install it using the appropriate package manager:

ETS

Gentoo
$ emerge -atuv net-wireless/bluez

Arch, Manjaro
$ sudo pacman -S bluez

Cent0S, Fedora, AlmalLinux, Rocky Linux
$ sudo dnf install bluez

CentOS/RHEL
$ sudo yum install bluez

Debian, Ubuntu
$ sudo apt install bluez

openSUSE
sudo zypper 1install bluez

Solus
$ sudo eopkg install bluez

Void Linux
$ sudo xbps-install -S bluez

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

53 /365

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

The SenseGlove Unreal Engine Handbook

2. Run the following command to ensure that BlueZ is installed and check your
bluetoothctl version:

bluetoothctl version
Version 5.77

3. Ensure that the bluetooth service is started and running. For example, on
Gentoo Linux:

$ rc-service bluetooth start
You might see one of these outputs based on whether it's already running or not:

* Starting bluetooth ...
or
* WARNING: bluetooth has already been started

4. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

5. Make sure the glove is turned on.

6. Use bluetoothctl list or bluetoothctl show command to extract your PC's
Bluetooth Controller MAC Address which is useful for later on:

54 /365

$ bluetoothctl 1list

The SenseGlove Unreal Engine Handbook

Controller CC:15:31:90:69:87 BlueZ 5.77 [default]

$ bluetoothctl show

Controller CC:15:31:90:69:87 (public)

Manufacturer: 0x0002 (2)
Version: Ox0b (11)
Name: BlueZ 5.77
Alias: BluezZ 5.77
Class: Ox007c010c (8126732)
Powered: yes
PowerState: on
Discoverable: no
DiscoverableTimeout: Ox0000003c
Pairable: no
UUID: Message Notification Se..
UUID: A/V Remote Control
UUID: OBEX Object Push
UUID: Message Access Server
UUID: PnP Information
UUID: IrMC Sync
UUID: Headset
UUID: A/V Remote Control Target
UUID: Generic Attribute Profile
UUID: Phonebook Access Server
UUID: Audio Sink
UUID: Device Information
UUID: Generic Access Profile
UUID: Handsfree Audio Gateway
UUID: Audio Source
UUID: OBEX File Transfer
Modalias: usb:v1D6Bp0246d054D
Discovering: no
Roles: central
Roles: peripheral

Advertising Features:
ActiveInstances: 0x00 (0)
SupportedInstances: 0x0c (12)
SupportedIncludes: tx—-power
SupportedIncludes: appearance
SupportedIncludes: local-name
SupportedSecondaryChannels: 1M
SupportedSecondaryChannels: 2M

(60)

(00001133-0000-1000-8000-00805f9b34fb)
(0000110e-0000-1000-8000-00805f9b34fb)
(00001105-0000-1000-8000-00805f9b34fb)
(00001132-0000-1000-8000-00805f9b34fb)
(00001200-0000-1000-8000-00805f9b34fb)
(00001104-0000-1000-8000-00805f9b34fb)
(00001108-0000-1000-8000-00805f9b34fb)
(0000110c-0000-1000-8000-00805f9b34fb)
(00001801-0000-1000-8000-00805f9b34fb)
(0000112f-0000-1000-8000-00805f9b34fb)
(0000110b-0000-1000-8000-00805f9b34fb)
(0000180a-0000-1000-8000-00805f9b34fb)
(00001800-0000-1000-8000-00805f9b34fb)
(0000111f-0000-1000-8000-00805f9b34fb)
(0000110a-0000-1000-8000-00805f9b34fb)
(00001106-0000-1000-8000-00805f9b34fb)

SupportedCapabilities.MinTxPower: Oxffffffde (-34)
SupportedCapabilities.MaxTxPower: Ox0007 (7)
SupportedCapabilities.MaxAdvLen: Oxfb (251)

55 /365

The SenseGlove Unreal Engine Handbook

SupportedCapabilities.MaxScnRspLen: Oxfb (251)
SupportedFeatures: CanSetTxPower
SupportedFeatures: HardwareOffload

7. Ensure the controller is powered on:

$ bluetoothctl power on

Changing power on succeeded

8. Enable the agent to listen for Bluetooth events that require user interaction,
such as pairing requests and managing device authorizations:

$ bluetoothctl agent on
9. Set the current agent as the default agent:

$ bluetoothctl default-agent

No agent 1is registered
10. Set the controller to be discoverable for 180 seconds:

$ bluetoothctl discoverable on

bluetoothctl discoverable on

hci® new_settings: powered connectable ssp br/edr le secure-conn wide-band-
speech

hci® new_settings: powered connectable discoverable ssp br/edr le secure-conn
wide-band-speech

Changing discoverable on succeeded

Note

To change the default discoverable timeout, you can set it manually using the
bluetoothctl discoverable-timeout command.

56 /365

The SenseGlove Unreal Engine Handbook
$ bluetoothctl discoverable-timeout 300

Changing discoverable-timeout 300 succeeded
11. Then, make the controller pairable as well:

$ bluetoothctl pairable on

hci® new_settings: powered connectable discoverable bondable ssp br/edr 1le

secure-conn wide-band-speech
Changing pairable on succeeded

12. Begin scanning for devices:

$ bluetoothctl scan on

SetDiscoveryFilter success

13. After a few seconds, list the discovered devices:

bluetoothctl devices

Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device

78:D2:52:42:33:2F
94:3C:C6:47:65:72
AC:F1:08:37:9F:93
70:D6:10:9D:73:8F
TF:2C:8C:8D:09:9F
F9:56:4B:86:1E:13
C9:A3:07:41:91:B0
4F:9D:F8:20:43:F3
CC:B1:1A:2D:A8:A4
AO:D7:F3:76:14:51
5C:17:CF:1D:35:37
E2:F8:03:F6:D8:CB
38:18:4C:E9:69:7A
B8:D6:1A:BA:81:32

78-D2-52-42-33-2F
NOVA-1217-L

LG DSN7CY(93)
70-D6-10-9D-73-8F
7F-2C-8C-8D-09-9F
F9-56-4B-86-1E-13
iLamp

Bedroom

[TV] UE4035500

[TV] Samsung AU7100 75 TV

OnePlus 8 Pro
E2-F8-03-F6-D8-CB
LE_WH-1000XM3
Nova 2 0667-L

Note

If your device is not listed yet, you can run this command multiple times as
bluetoothctl continues the device discovery in the background.

57 /365

The SenseGlove Unreal Engine Handbook

14. Use the following command to pair with the discoved glove:
$ bluetoothctl pair GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl pair 94:3C:C6:47:65:72

Attempting to pair with 94:3C:C6:47:65:72

[CHG] Device 94:3C:C6:47:65:72 Connected: yes

[CHG] Device 94:3C:C6:47:65:72 Bonded: yes

[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes

[CHG] Device 94:3C:C6:47:65:72 Paired: yes

Pairing successful

Note

If you encounter the Failed to pair: org.bluez.Error.AuthenticationFailed
error message, it might be misleading. Check if there is a line with the glove's
MAC address followed by connected: yes, which indicates that the connection
was actually successful.

Attempting to pair with 94:3C:C6:47:65:72
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
Failed to pair: org.bluez.Error.AuthenticationFailed

15. Mark the device as trusted by issuing the following command:
$ bluetoothctl trust GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl trust 94:3C:C6:47:65:72

[CHG] Device 94:3C:C6:47:65:72 Trusted: yes
Changing 94:3C:C6:47:65:72 trust succeeded

16. Attempt to connect to the glove again:

58 /365

The SenseGlove Unreal Engine Handbook

$ bluetoothctl connect GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl connect 94:3C:C6:47:65:72

Attempting to connect to 94:3C:C6:47:65:72

[CHG] Device 38:18:4C:E9:69:7A RSSI: oxffffffdo (-48)

[CHG] Device 94:3C:C6:47:65:72 Connected: yes

[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes

Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable

Note

Again, the error message may be misleading. The connection is often successful
despite the error.

17.If desired, you can extract some information from the glove using:
$ bluetoothctl info GLOVE_MAC_ADDRESS
For example:

bluetoothctl info 94:3C:C6:47:65:72
Device 94:3C:C6:47:65:72 (public)
Name: NOVA-1217-L
Alias: NOVA-1217-L
Class: Ox00001fO0 (7936)
Paired: yes
Bonded: yes
Trusted: yes
Blocked: no
Connected: yes
LegacyPairing: no
UUID: Serial Port (00001101-0000-1000-8000-00805f9b34fh)

18. Create an RFCOMM device:

59 /365

The SenseGlove Unreal Engine Handbook

$ sudo rfcomm connect /dev/rfcommX GLOVE_MAC_ADDRESS CHANNEL_NUMBER

For example:

$ sudo rfcomm connect /dev/rfcomm®@ 94:3C:C6:47:65:72 1

Connected /dev/rfcomm®@ to 94:3C:C6:47:65:72 on channel 1
Press CTRL-C for hangup

Note
The rfcomm command requires root permision, so it must be run with sudo .
Tip

To determine the channel number, run the following command:

$ sdptool browse GLOVE_MAC_ADDRESS

$ sdptool browse 94:3C:C6:47:65:72
Browsing 94:3C:C6:47:65:72 ...
Service Name: SPP_SERVER
Service RecHandle: 0x10000
Service Class ID List:
"Serial Port" (0x1101)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
Profile Descriptor List:
"Serial Port" (0x1101)
Version: 0x010

Note

If you have more than one glove or in general multiple serial Bluetooth devices
connected to your device connected to your PC, then /dev/rfcomme may already
be allocated to another device. In that case, increment the number until finding

60 /365

The SenseGlove Unreal Engine Handbook

a free rfcomm device. You can query the existing rfcomm devices using the
command: 1s /dev/rfcommx .

19. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

20. Once the SenseCom is closed and we are done with the gloves, we can
disconnect the gloves using:

$ bluetoothctl disconnect ${SG_DEVICE}
$ sudo rfcomm release ${SG_RFCOMM}

For example:

$ bluetoothctl disconnect 94:3C:C6:47:65:72
$ sudo rfcomm release /dev/rfcomm®

Note

Again, the rfcomm command requires elevated permissions, so it must be run
with the sudo command.

Scripts to Easily Connect and Disconnect from a Glove

You can automate the above tedious process using scripts for connecting and
disconnecting gloves.

sg-connect.sh:

61 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/gnu-linux/

The SenseGlove Unreal Engine Handbook
#!/usr/bin/env sh

CTRL_DEVICE="YOUR_BLUETOOTH_CONTROLLER_MAC_ADDRESS"
SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl pairable on

bluetoothctl discoverable on

bluetoothctl pair ${SG_DEVICE}

bluetoothctl trust ${SG_DEVICE}

bluetoothctl connect ${SG_DEVICE}

rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

sg-disconnect.sh:

#!/usr/bin/env sh

SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcommO"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

62 /365

The SenseGlove Unreal Engine Handbook

Example Scripts for a Left-Handed Glove

$ cat sg-connect-left.sh
#!/usr/bin/env sh

CTRL_DEVICE="CC:15:31:90:69:87"
SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl pairable on

bluetoothctl discoverable on

bluetoothctl pair ${SG_DEVICE}

bluetoothctl trust ${SG_DEVICE}

bluetoothctl connect ${SG_DEVICE}

rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

$ cat sg-disconnect-left.sh
#!/usr/bin/env sh

SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

Set the executable permissions for all users:
$ chmod a+x sg-connect-left.sh
$ chmod a+x sg-disconnect-left.sh

Before running SenseCom:
$ sudo ./sg-connect-left.sh
Password:

Changing pairable on succeeded
hci® new_settings: powered connectable bondable ssp br/edr le secure-conn
wide-band-speech
hci® new_settings: powered connectable discoverable bondable ssp br/edr le
secure-conn wide-band-speech
Changing discoverable on succeeded
Attempting to pair with 94:3C:C6:47:65:72
Failed to pair: org.bluez.Error.AlreadyExists
Changing 94:3C:C6:47:65:72 trust succeeded
Attempting to connect to 94:3C:C6:47:65:72
63 /365

The SenseGlove Unreal Engine Handbook
hci® 94:3C:C6:47:65:72 type BR/EDR connected eir_len 18
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes
Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable
Run SenseCom in between!
Once SenseCom 1is closed:
$ sudo ./sg-disconnect-left.sh
sudo ./sg-disconnect-left.sh
Password:
Attempting to disconnect from 94:3C:C6:47:65:72
hci® 94:3C:C6:47:65:72 type BR/EDR disconnected with reason 2
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: no

Successful disconnected
Can't release device: No such device

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using the command line.

64 /365

https://youtu.be/Swkk_KmXwq8
https://youtu.be/Swkk_KmXwq8

The SenseGlove Unreal Engine Handbook

SenseGlove Tutorial | Connecting to Nova Gloves on Linux

65 /365

https://www.youtube.com/watch?v=Swkk_KmXwq8

The SenseGlove Unreal Engine Handbook

SenseCom on Microsoft Windows

Follow these steps to quickly set up and run SenseCom on Microsoft Windows:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type[/]to

<> Code () Issues 5 {9 Pullrequests &) Discussions ® Actions [Projects 1 0 wiki © Security |~ Insi

SenseCom Public <7 EditPins v < Watch

¥ main ~ ¥ 1Branch © 2 Tags) Go to file Add file ~ <> Code ~

Codespaces
& MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI

BB Linux
B Wi _ — git@github.com: Adjuvo/SenseCom.git
n S v16.

SH key.
[9 LICENSE

[README.md h mit %] Open with GitHub Desktop

(5 ReADMEmd.bak Open with Visual Studio

[README &[5 MIT license [7) Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer after
downloading it.

3. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

4. Make sure the glove is powered on.

5. Access Windows Bluetooth Settings by navigating to Settings > Devices >
Bluetooth & other devices.

66 / 365

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

Settings

B e Bluetooth & other devices

Add Bluetooth or other device

Devices
Bluetooth

Bluetooth & other devices ® On

& Now discoverable as "MAMADOU-LEGION-"
Printers & scanners

Mouse

Audio

Touchpad q D) Headphones (Oculus Virtual Audio Device) Help from the web

Typing WH-1000XM3
Paired
AutoPlay

USB Other devices

RS

6. Click on Add Bluetooth or other devices.

7.In the new window click on Bluetooth.

67 /365

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Choose the kind of device you want to add.

)B Bluetooth

Mice, keyboards, pens, or audio and other kinds of Bluetooth devices

Wireless display or dock

Wireless monitors, TVs, or PCs that use Miracast, or wireless docks

Everything else
Xbox controllers with Wireless Adapter, DLNA, and more

Cancel

8. Wait for the glove to be discovered, then click on it.

68 /365

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Make sure your device is turned on and discoverable. Select a device below to
connect.

E Nova 2-03481-L

@ LE_ZWH-1000XM3

E NOVA-1217-L

Cancel

9. Click Connect to connect and pair the glove.

69 /365

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Make sure your device is turned on and discoverable. Select a device below to
connect.

E Nova 2-03481-L

@ LE_ZWH-1000XM3

E NOVA-1217-L
Connecting

Press Connect if the PIN on NOVA-1217-L matches this one.

773726

Unknown device

Cancel

10. Once the glove is paired, you're good to go. Click on Done.

70/ 365

The SenseGlove Unreal Engine Handbook

Add a device

Your device is ready to go!

NOVA-1217-L
Paired

11. Once you are back to Windows Bluetooth settings, verify that the glove is listed
as a paired device.

711365

The SenseGlove Unreal Engine Handbook

Settings

B e Bluetooth & other devices

B 192.168.68.140 - Sonos Play:1
Find a setting) B> N ne

Devices 1 192.168.68.141 - Sonos Play:1
N Ne

Bluetooth & other devices i 192.168.68.143 - Sonos SYMFONISK
Ne¢ d

Printers & scanners .
CP2102N USB to UART Bridge Controller

ble

Mouse

NOVA-1217-L
Touchpad Paired

i ™_ Slaapkamer TV
Typing N i

ected
AutoPlay

s 8| Show notifications to connect using Swift Pair

12. After successfully paring your glove, it's time to run SenseCom. Navigate to the
folder where you extracted SenseCom and go to to
/path/to/extracted/SenseCom/directory/Win/SenseCom_Win_Latest.

72 /365

The SenseGlove Unreal Engine Handbook

n a l < | C:\Users\mamadou\Desktop\SenseCom-main\Win\SenseCom_Win_Latest
Home Share View
. Filg New item ~ B n
i Eas h B cait

New Properties)
folder + e History

SenseCom-main Win SenseCom_Win_Latest

W Name h Date modified Type

Quick access
l MonoBleedingEdge 10/04/2024 11:24 File folder

MW SenseCom_Data 10/04/2024 11:24 File folder
SenseCom.exe 10/04/2024 11:24

& UnityCrashHandler64.exe 10/04/2024 11:24 Application

] UnityPlayer.dll 10/04/2024 11:24 Application extension

il Desktop
Downloads
E Documents
ES Pictures
= This PC
W 3D Objects
i Desktop
E Documents
Downloads
Music

ES Pictures

e WIN1O0 (C)
o Network

& Linux

5items |

Note

Inside the /path/to/extracted/SenseCom/directory/Win/ folder, a SenseCom
installer is available if you wish to permanently install it on your operating
system.

13.In a moment, SenseCom should recognize and connect to your glove(s):

731365

The SenseGlove Unreal Engine Handbook

. SenseCom 1.6.1 — X

== Calibrate Exit

K2

Nova-1217-L Right Hand

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

14. At this stage, SenseCom is ready and you should be able to connect to and

communicate with SenseGlove devices from inside your Unreal Engine
applications.

74 /365

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

Enabling XR_EXT_hand_tracking OpenXR
extension on VR Headsets

Important

Starting from version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. Without this OpenXR
extension the plugin won't output any glove data.

Starting from version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. If you are streaming from your
PC to your VR headset, to enabling XR_EXT_hand_tracking support, might require
additional settings depending on the vendor.

For Meta Quest headsets, enable the Developer runtime features under the
Settings > Beta section:

751365

The SenseGlove Unreal Engine Handbook

Search G §

Home

Store Account Privacy Payment General Beta

Library Restart Meta Quest Link

Restarting Meta Quest Link will reboot all of your Meta Quest Link software.
Events

Devices Public Test Channel
Receive future Public Test Channel releases. Learn more.
Settings

Demo Mode
Start demo mode so that your Meta Quest Link library will only display apps that Start
you select.

Developer runtime features
Enables runtime features for developers such as OpenXR extensions which require o
Meta Quest Link.

Pass-through over Meta Quest Link
Enables Pass-through over Meta Quest Link. Camera images will be processed on the @
host PC.

Follow list
Eye tracking over Meta Quest Link

Notifications Enables eye tracking over Meta Quest Link. Abstracted gaze data will be processed on @
the host PC.

Help Centre

Caution

Streaming to Meta Quest headsets from SteamVR is no longer supported
because the migration to OpenXR has caused controller offsets for Meta Quest
HMDs to break on SteamVR. One possible reason is that SteamVR lists
XR_FB_hand_tracking as an unsupported feature. Further investigation is
needed to identify the exact underlying cause.

For VIVE headsets relying on VIVE Business Streaming, ensure the Hand Tracking
settings under Input are enabled:

76 /365

https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/
https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/

The SenseGlove Unreal Engine Handbook

Settlngs Controller
Compatibility mode
General

Performance Tracking

Graphics _
troller at the same time
Input VIVE Ultimate Tracker

Advanced Fallback t e Tracker
About Stream avatar data to VRChat via OSC
Eye 1 facial tracking dat:
VIVE Wrist Tracker
Use VIVE Wrist Tl

VIVE Business Streaming 1.14.8a

Standing by

Note

Tracking and accessing FXRMotionControllerData output from SenseGlove
devices do not require Hand and Body Tracking to be enabled on the HMD
device. Enabling this feature is only necessary if you wish to use hand-tracking
as a fallback option when no glove is connected to your PC.

As mentioned in the v2.1.0 release changelog, enabling the Meta XR plugin—and
potentially the VIVE OpenXR plugin—alongside the SenseGlove Unreal Engine Plugin

in the same project will disrupt the OpenXR functionality provided by the SenseGlove
Plugin, rendering it unusable.

Caution

As noted in the v2.1.0 release changelog, since this release enabling the Meta XR
plugin, —and potentially the VIVE OpenXR plugin— alongside the SenseGlove

771365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

The SenseGlove Unreal Engine Handbook

Unreal Engine Plugin in the same project will disrupt the OpenXR functionality
provided by the SenseGlove Unreal Engine Plugin, rendering it unusable.

Although the SenseGlove OpenXR +implementation 1is fully compatible with the
IOpenXRHMD -interface and the FOpenXRHMD XRTrackingSystem, it is not
compatible with the FOculusXRHMD backend provided by the Meta XR plugin.
The same -+issue likely applies to the VIVE OpenXR plugin. So, 1if these
plugins are enabled in your project, the SenseGlove OpenXR will not
function as 1intended, effectively breaking the plugin's functionality. It
seems these plugins are necessary in order to make the fallback to the
hand-tracking feature work on Android. While we may add support and
compatibility with Meta XR and VIVE OpenXR plugins in the future, for the
time being, if your project requires these plugins, we advise continuing
with the v2.0.x release of the SenseGlove Unreal Engine plugin until this

issue 1is addressed.

781365

The SenseGlove Unreal Engine Handbook

Setting Up the SenseGlove Default
Classes

Setting up the default SenseGlove classes is recommended if you want to take full
advantage of the quality-of-life features provided by the SenseGlove Unreal Engine
Plugin. These features are designed to streamline the development process within
the Unreal Engine environment. For instance, if you need a quick setup with a virtual
hand mesh already integrated into a pawn, enabling you to get started with your
project in just a few minutes, it is essential to configure the default classes and
familiarize yourself with these classes.

If you wish to extend the functionality of these classes, you can do so by subclassing
them. The default SenseGlove classes, which are prefixed with sG, include:

e SGGameModeBase

e SGPawn
SGPlayerController
SGGamelnstance
SGGameUserSettings

However, if you prefer a different approach or do not require the functionality
provided by the default SenseGlove classes, you can opt to utilize individual
components like SGVirtualHandComponent, SGWristTrackerComponent, etc., directly
within your own actors. Alternatively, you can develop a completely custom system
from scratch, leveraging the low-level SenseGlove C++ or Blueprint APIs.

Additionally, you can enforce setting the default SenseGlove classes during
initialization via the plugin settings, if desired.

79 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/ggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/

The SenseGlove Unreal Engine Handbook

Setting Up SGGameModeBase

After installing and enabling the SenseGlove Unreal Engine Plugin, the easiest and
most straightforward approach to get started is to just set the default GameMode to
SGGameModeBase from Edit > Project Settings... > Maps & Modes > Default Mode >
Default GameMode . By doing this, the Default Pawn Class is automatically set to
SGPawn , and the Player Controller Class is setto SGPlayerController . This setup
ensures that a SenseGlove pawn will automatically spawn when you hit the play
button in the editor.

u & Project Settings
All Settings Ql

Project Project - Maps & Modes

Description Export... Import...

Encryption uh These settings are saved in DefaultEngine.ini, which is currently writable
GameplayTags
Default Modes
» Maps & Modes
Movies
Packaging
Supported Platforms

Target Hardware

Game

Asset Manager Default Maps
Asset Tools

Editor Startup Map

Engine
Al System

Editor Template Map Oy

Animation -

Game Default Map
Animation Modifiers
Audio Advanced
Chaos Solver Local Multiplayer

Cinematic Camera

C
Control Rig

Tip

For greater control and customization, consider extending the
SGGameModeBase.

Note

80 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase

The SenseGlove Unreal Engine Handbook

Currently, setting SGGameModeBase Or a subclass of it as the Default GameMode is
not a strict requirement. Its primary function is to ensure that a default sGPawn
and sGPlayerController are set. However, this might change in the future, and
it could become a mandatory setting.

Important

While setting SGGameModeBase as the Default GameMode will automatically spawn
the default SGPawn at BeginPlay and initiate communication with the
SenseGlove devices, it will not display any virtual hands in your simulation by
default. You might still need to configure the Virtual Hand Meshes and the Wrist
Tracking Hardware separately.

Important

Before starting the simulation in the editor, make sure that SenseCom is
running and XR_EXT_hand_tracking is enabled. Without these, your simulation
will not receive hand pose data from the SenseGlove devices.

Extending SGGameModeBase

Follow these steps to extend and set up your own version of SGGameModeBase :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

81/365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/

The SenseGlove Unreal Engine Handbook

ective @ Lit 0 - — &) € 1004 10°] 2 025 1 /6B
4

R Shectage,

|-
(o}

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

New Folder

- .
=(_ Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

— hold (Ctrl + Alt) for more

A Level

@ Material

: Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Bluepri 4} Settings

Blueprint

Favorites . .
Cinematics

SGHandb Editor Utilities
All Foliage
> FX
Gameplay

FPV Input

L':“V_‘ Live Link

VRS

yRT Material p here or right cl
AU Media
B
H:
In Paper2D
M Physics
M
G

Miscellaneous

Texture
Collectior ool Presets
User Interface

ntL World

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

82 /365

COMMON

© Actor

Pawn

x
& Character

Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGGameModeBase in the
Search box. When SGGameModeBase appears, select it and click the Select
button to create your new Blueprint class based on it.

83 /365

The SenseGlove Unreal Engine Handbook

Pick Parent Class

v COMMON

An Actor is an object that can be placed or spawned in the

@ Actor
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn :
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

AL e el G Pawn used by the player.

Game Mode Base defines the game being played, its rules,

40}
& i
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

[*{ Actor Component added to any actor.

A Scene Component is a component that has a scene

n
| e SRR transform and can be attached to other scene ...

w ALL CLASSES

¥ SGGameModeBase
@& Object
@ Actor
@ Info
GameModeBase

SGGameModeBase

5 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

84 /365

The SenseGlove Unreal Engine Handbook

5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

= Q

» Favorites Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on

Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

-V

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
im FPWeapon -+
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGGameMode

1 item

B5 Content Drawer M Output Log Cmd v

85 /365

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameModeBase as the Default
GameMode . YOu can do this by navigating to Project Settings > Project > Maps
& Modes > Default Modes > Default GameMode .

& Project Settings
All Settings Q

Project Project - Maps & Modes

Description Export... Import...

Encryption o' The ed in DefaultEngine.ini, whick urrently writable
GameplayTags

Maps & Modes

Default Modes
Default G e de v €5 ®

Sels

Movies
Packaging
Advanced

Supported Platforms

Target Hardware

Game
Manager

Ta
Slate RHIRenderer Settings CH 3
Widget State Settings

Editor Template Map 0 Array element

Engine
Al System

e Default Map

Animation Advanced

Animation Modifiers Local Multiplayer

Audio plit

Ch. olver o Player en Layout
Cinematic Camera ee Pla ol 1 Layout

Four Plaver en Lavout

86 /365

The SenseGlove Unreal Engine Handbook

Setting Up SGPawn

Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set sGPawn as the Default Pawn Class by navigating to Project
Settings > Project > Maps & Modes > Default Modes > Selected GameMode > Default
Pawn Class .However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode and
setting the Default Pawn Class directly from there. Once set, click on the compile
button and save your game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - m] X

()
BP_SGGameModex x SGGame Mode Base

o) [@) =§i Compile : = Q' Diff v L+ Class Settings | #2 Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name
Game Mode
Public View
5 Content Drawer 8 Output Log Cmd v & 1Unsaved £ Revision Control v

Tip

For greater control and customization, consider extending the SGPawn.

Caution

Setting sGPawn or a subclass of it as the Default Pawn Class without setting
SGPlayerController or a subclass of it as the default player Controller Class

87 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html#extending-sgpawn
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html

The SenseGlove Unreal Engine Handbook

will cause the sGpawn to not function properly. So, it's a strict requirement.

Important

To have a fully functional sGpawn, simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Extending SGPawn

Follow these steps to extend and set up your own version of SGPawn :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

88 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

ective @ Lit 0 - — &) € 1004 10°] 2 025 1 /6B
4

R Shectage,

|-
(o}

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

New Folder

- .
=(_ Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

— hold (Ctrl + Alt) for more

A Level

@ Material

: Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Bluepri 4} Settings

Blueprint

Favorites . .
Cinematics

SGHandb Editor Utilities
All Foliage
> FX
Gameplay

FPV Input

L':“V_‘ Live Link

VRS

yRT Material p here or right cl
AU Media
B
H:
In Paper2D
M Physics
M
G

Miscellaneous

Texture
Collectior ool Presets
User Interface

ntL World

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

89 /365

The SenseGlove Unreal Engine Handbook

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
& Character

A Player Controller is an actor responsible for controlling a

Player Controller Pawn used by the player.

Game Mode Base defines the game being played, its rules,

Calie L bale s scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

(| - E O SO e added to any actor.

A Scene Component is a component that has a scene

A
ts Scene Component transform and can be attached to other scene ...

ALL CLASSES

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGPawn in the Search box.
When sGPawn appears, select it and click the Select button to create your new
Blueprint class based on it.

90 /365

v COMMON

© Actor

Pawn

x
@ Character

&q Player Controller

Game Mode Base
[#] Actor Component
A+, Scene Component

w ALL CLASSES
% SGPawn

@ Object
@® Actor
£ Pawn
b JSGPawn

4 items

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Select Cancel

4, After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the

context menu.

91 /365

The SenseGlove Unreal Engine Handbook

5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

= Q

» Favorites Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on

Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

-V

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
i FPWeapon
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGPawn

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

92 /365

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGPawn as the Default Pawn Class.
Depening on the Unreal Engine version and your project's type and
configuration, you might be able do this by navigating to Project Settings >
Project > Maps & Modes > Default Modes > Selected GameMode > Default Pawn
Class . However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode
and setting the Default Pawn Class directly from there. Once set, click on the
Compile button and save your game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - (m] X

(Ar)
BP_SGGameModex x SGGame Mode Base

= i@ Compile i =g Diff v L} Class Settings | # Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name

Game Mode

Public View
= 1Unsaved 3 Revision Control v

5 Content Drawer | Output Log Cmd v

Important

To have a fully functional sGPawn, simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Customizing SGPawn

Customizing the sGpawn after subclassing is straightforward and flexible.

93 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The

The SenseGlove Unreal Engine Handbook

sGPawn class includes several key subcomponents:

Wrist Tracker Left and Wrist Tracker Right of type
SGWristTrackerComponent .

HandLeft and HandRight of type SGVirtualHandComponent and represent the
virtual hand models visible to the user in the simulation.

RealHandLeft and RealHandRight Of type SGVirtualHandComponent . By default,
these are hidden and represent the real hands within the simulation. These
components are useful if you need to separate the rendering of the virtual
hands from the real hands. For instance, the virtual hands typically have

collisions and cannot pass through objects, while the real hands are not
constrained in this way.

94 / 365

The SenseGlove Unreal Engine Handbook

(- l’\ File Edit Asset View Debug Window Tools Help
w9

VRTemplateMap BP_SGPawn X
= i@ Compile i =g Diff v fDFind *Q Hide Unrelated

[¢ Components x
+ Add Q

I BP_SGPawn (Self)
k. Scene Root (SceneRoot) Edit in C++
k. Wrist Tracker Right (WristTrackerRight) Edit in C++
< Controller Visualizer Right (ControllerVisualizerRight) Edit in C++

2 Hand Right (HandRight)

Right Thumb Fingertip Grab Collider (RightThumbFingertipGrabCollider)
Right Middle Fingertip Grab Collider (RightMiddleFingertipGrabCollider) Edit in C++
Right Index Fingertip Grab Collider (RightindexFingertipGrabCollider) Edit in C++
Right Thumb Fingertip Touch Collider (RightThumbFingertipTouchCollider) Edit in C++
Right Index Fingertip Touch Collider (RightIindexFingertipTouchCollider) Edit in C++
Right Middle Fingertip Touch Collider (RightMiddleFingertipTouchCollider) Edit in C++
Right Ring Fingertip Touch Collider (RightRingFingertipTouchCollider) Edit in C++
Right Pinky Fingertip Touch Collider (RightPinkyFingertipTouchCollider) Edit in C++
2 Real Hand Right (RealHandRight) Edit in C++
2, Hand Left (HandLeft) Edit in C++
Left Ring Fingertip Touch Collider (LeftRingFingertipTouchCollider) Edit in C++
Left Pinky Fingertip Touch Collider (LeftPinkyFingertipTouchCollider) Edi
Left Middle Fingertip Touch Collider (LeftMiddleFingertipTouchCollider) Edit in C++
Left Thumb Fingertip Grab Collider (LeftThumbFingertipGrabCollider) Edit in C++
Left Index Fingertip Grab Collider (LeftIndexFingertipGrabCollider) Edit in C++
Left Middle Fingertip Grab Collider (LeftMiddleFingertipGrabCollider) Edit in C++
Left Thumb Fingertip Touch Collider (LeftThumbFingertipTouchCollider) Edit in C++
95 Left Index Fingertip Touch Collider (LeftindexFingertipTouchCollider) Edit in C++

M« Camera (Camera) Edit in C++
k. Wrist Tracker Left (WristTrackerLeft) Edit in C++

s Controller Visualizer Left (ControllerVisualizerLeft) Edit in C++
2, Real Hand Left (RealHandLeft) Edit in C++

95 /365

The SenseGlove Unreal Engine Handbook

Also, it's possible to filter the properties for these SenseGlove components inside
the Details panelinside the sGpPawn Blueprint Editor by typing the word SenseGlove
inside search box of the Details panel.

96 / 365

The SenseGlove Unreal Engine Handbook
X
SGPawn

Details

% SenseGlove

Sense Glove
WristTrackerLeft
Right
Wrist Tracking Settings Overrides
Override Plugin Settings
HandLeft
Right
Virtual Hand Settings Overrides
Override Plugin Settings
RealHandLeft
Right
Virtual Hand Settings Overrides
Override Plugin Settings
WristTrackerRight
Right
Wrist Tracking Settings Overrides
Override Plugin Settings
HandRight

Right

97 /365

The SenseGlove Unreal Engine Handbook

Override Plugin Settings

RealHandRight

Right

Virtual Hand Settin

Override Plugin Settings

Please visit how to setup the Virtual Hand Meshes, The Virtual Hand Mesh Settings,
and how to setup the Wrist Tracking Hardware sections for more information.

98 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

Setting Up SGPlayerController

Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set sGPlayerController as the default Player Controller Class
by navigating to Project Settings > Project > Maps & Modes > Default Modes >
Selected GameMode > Player Controller Class.However, regardless of the engine
version or project type and configuration, you can always configure this by opening
your Default GameMode and setting the default Player Controller Class directly
from there. Once set, click on the compile button and save your game mode
Blueprint asset.

File Edit Asset View Debug Window Tools Help - m] X

()
BP_SGGameModex x SGGame Mode Base

o) [@) =§i Compile : = Q' Diff v L+ Class Settings | #2 Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name
Game Mode

Public View

5 Content Drawer 8 Output Log Ccmd v & 1Unsaved $* Revision Control v

Tip

For greater control and customization, consider extending the
SGPlayerController.

Caution

99 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller

The SenseGlove Unreal Engine Handbook

Setting SGPlayerController or a subclass of it as the default Player Controller
Class without setting sGpPawn or a subclass of it as the Default Pawn Class will
cause your simulation or editor to crash. So, it's a strict requirement.

Extending SGPlayerController

Follow these steps to extend and set up your own version of SGPlayerController :

1.In the Content Browser, clickthe + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

=
= % Perspective @ Lit | Show

1 . - - S S 1
. e =B @ © GIED (D G =B ¢
i

V; Import to /Game/Blueprints
&7 Add Feature or Content Pack..
B Add Quixel Content

3 New Folder

- .
"lm Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

Level
hold (Ctrl + Alt) for more

A

* X
*

Material

NELEIERAEN]

Animation
o Content E i
Artificial Intelligence

-+ Add Audio > Content > Blueprints £+ Settings
Blueprint

Favorites
Cinematics

SGHandb Editor Utilities
All Foliage
Conte Fx
Blue
Cha Gameplay
FPV Input
Levi |ive Link
VRS
VRT Material Drop files here or right click tc
AU Media
B
H:
In Paper2D
M Physics
M
Te

Miscellaneous

Texture
Collectior 100l Presets
User Interface

5 Content [World

100/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

The SenseGlove Unreal Engine Handbook

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

e el Pawn used by the player.

Game Mode Base defines the game being played, its rules,

[+
) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

C, | - E O e e added to any actor.

A Scene Component is a component that has a scene

A
| CEEUE CETIEEET transform and can be attached to other scene ...

ALL CLASSES

3.In the expanded ALL CLASSES section, start typing SGPlayerController inthe
Search box. When sGPlayerController appears, select it and click the select
button to create your new Blueprint class based on it.

101/ 365

The SenseGlove Unreal Engine Handbook

Pick Parent Class

v COMMON

An Actor is an object that can be placed or spawned in the

@ Actor
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn :
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

AL e el G Pawn used by the player.

Game Mode Base defines the game being played, its rules,

40}
& i
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

[*{ Actor Component added to any actor.

A Scene Component is a component that has a scene

n
| e SRR transform and can be attached to other scene ...

w ALL CLASSES

¥ SGPlayerController
@& Object
@ Actor
@ Controller
&Q PlayerController

- “WSGPlayerControlle

5 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

102/ 365

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

h's

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGPlayer
Controller

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

103 /365

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGPlayerController as the default
Player Controller Class.Depening on the Unreal Engine version and your
project's type and configuration, you might be able do this by navigating to
Project Settings > Project > Maps & Modes > Default Modes > Selected
GameMode > Player Controller Class.However, regardless of the engine
version or project type and configuration, you can always configure this by
opening your Default GameMode and setting the default Player Controller
Class directly from there. Once set, click on the compile button and save your

game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - (m] X

()

BP_SGGameModex x SGGame Mode Base
= | (o] :gj Compile ; = 0' Diff v {:} Class Settings Z Class Defaults
NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name

Game Mode

Public View

5 Content Drawer |8 Output Log Cmd v & 1Unsaved $* Revision Control v

104/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html

The SenseGlove Unreal Engine Handbook

Setting Up SGGamelnstance

Setting SGGameInstance as the default Game Instance Class is very straightforward.
You can do this by navigating to Project Settings > Project > Maps & Modes > Game

Instance > Game Instance Class.

u Y Project Settings

All Settings Q
-

Project

Description

Default Modes

Encryption
GameplayTags

» Maps & Modes
Movies
Packaging
Supported Platforms

Default Maps
Target Hardware

Editor Startup Map
Game ol

Asset Manager Editor Template M

. Game Default Map
Engine
Al System

Advanced

Animation Local Multiplayer

Animation Modifiers
Audio
Chaos Solver

Cinematic Camera

©
Control Rig

Tip

For greater control and customization, consider extending the
SGGamelnstance.

Important

Currently, setting SGGameModeBase or a subclass of it as the default Game
Instance Class iS not a strict requirement. However, if you intend to use any
SenseGlove console command it becomes mandatory. If not set, SenseGlove
console commands will not be recognized by Unreal Engine.

105/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

The SenseGlove Unreal Engine Handbook

Extending SGGamelnstance

Follow these steps to extend and set up your own version of SGGameInstance :

1. In the Content Browser, clickthe + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

-
= ’Perspectwe © Lit Show
D/

|l - e iy AW 3 1
. b < 2NN NE 10 K4 10° JEA(025) (k1
./, 4

o+ Sl"t‘clam,

]
"
N

.
Q

V; Import to /Game/Blueprints
¥, Add Feature or Content Pack..
B Add Quixel Content

New Folder

- 8
={a Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

hold (Gtrl + Alt) for more

@ Material

: NELEIERSSEN

Animation
5 Content E e)
Artificial Intelligence
+ Add Audio > Content > Blueprints 1+ Settings
. Blueprint
Favorites
Cinematics
SGHandb Editor Utilities
All Foliage
Conte FX
Blu¢
Cha Gameplay
FPV. Input
Levi[ive Link
VRS .
VR] Material Drop files here or right click to create content
Media
Miscellaneous
Paper2D
Physics
Texture
Collectior 100l Presets
User Interface

¥5 Content [World JiTrace v @)

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

106 / 365

COMMON

© Actor

Pawn

x
& Character

Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGGameInstance in the
Search box. When SGGameInstance appears, select it and click the Select
button to create your new Blueprint class based on it.

107 / 365

COMMON

© Actor

Pawn

x
Character

&q Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES
¥ SGGamelnstance

@ Object
@ Gamelnstance

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

(ONSGGamelnstance

3 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

108 /365

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

» Favorites Q =Tv Q

¥ SGHandbook Q

&= All
I= Content @
i Blueprints

im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate

im Audio

im Blueprints

#m Haptics

i Input

T WERS

i Materials

i Textires

» Collections ® Q

BP_SGGame
Instance

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

109/ 365

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameInstance as the default Game
Instance Class.You can do this by navigating to Project Settings > Project >

Maps & Modes > Game Instance > Game Instance Class.

& Project Settings
All Settings Q

Project Defaut Modes
Description
Encryption
GameplayTags
Maps & Modes
Movies ment

Packaging
S element

Supported Platforms
Default Maps

Target Hardware

Editor Startup Map

Game

Manager Editor Template Map

T
Game Default Map

Slate RHIRenderer Settings
Widget State Settings N

Eng | ne Local Multiplayer

Al System plits
Animation Two Player
Animation Modifi Three Player Split:
Audio

Ch olver d to Player 1

Cinematic Camera Game Instance

Game

110/ 365

The SenseGlove Unreal Engine Handbook

Setting Up SGGameUserSettings

Setting SGGameUserSettings as the default Game User Settings Class is very
straightforward. You can do this by navigating to Project Settings > Engine >
General Settings > Default Classes > Advanced > Game User Settings Class.Once
you change the default Game User Settings Class the Unreal Editor will prompt you
with Restart required to apply new settings.For the changes to take effect, click
on the Restart Now button and wait for the editor to reopen.

& Project Settings

Engine Q

Al System
Medium Font
Animation
Animation Modifiers
Audio Large Font
Chaos Solver
Advanced

Cinematic Camera
Default Classes

il

(CRONONS)

Cooker

Crowd Manager

Data Driven CVars

Debug Camera Controller
Enhanced Input

Enhanced Input (Editor Only)
Gameplay Debugger

Garbage Collection

€
(Gl ¢
CH ¢
€K

» General Settings
Hierarchical LOD Default Materials
Input
ws Indicator Material
Interchange
Interchange gITF
Interchange MaterialX

Landscape

Restart required to apply new
settings

Restart Now Restart Later

JiTracev @ [=& DerivedData v &% 1 Unsaved ¥ Revision Control v

Tip

For greater control and customization, consider extending the
SGGameUserSettings.

Important

111/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings

The SenseGlove Unreal Engine Handbook

Currently, setting SGGameUserSettings or a subclass of it as the default Game
User Settings Class is not a strict requirement. However, if you intend to use
any SGGameUserSettings-related SenseGlove console command it becomes
mandatory. If not set, calling any SGGameUserSettings-related SenseGlove
console command will cause your simulation or editor to crash.

Extending SGGameUserSettings

Follow these steps to extend and set up your own version of SGGameUserSettings :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose

Blueprint Class from the context menu.

4;...! | N . = L) () € G0 CERLD CALFS (a3

= W% Perspective Q@ Lit Show ‘

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

B3 New Folder

- .
= (. Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors
and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.
hold (Ctrl + Alt) for more

@ Material

x : Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Blueprints 4} Settings

. Blueprint
Favorites " "
Cinematics
SGHandb Editor Utilities

All Foliage
Conte Fx

Blu¢ G ‘

Cha ameplay

FPV Input

LE\"_‘ Live Link

VRS

VvR] Material Drop files here or right click to cr

AU Media

E Miscellaneous

In Paper2D

M Physics
M
G

Collectior

Texture

Tool Presets
User Interface
5 Content [World

112/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

The SenseGlove Unreal Engine Handbook

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

e el Pawn used by the player.

Game Mode Base defines the game being played, its rules,

[+
) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

C, | - E O e e added to any actor.

A Scene Component is a component that has a scene

A
| CEEUE CETIEEET transform and can be attached to other scene ...

ALL CLASSES

3.In the expanded ALL CLASSES section, start typing SGGameUserSettings in the
Search box. When sGGameUserSettings appears, select it and click the select
button to create your new Blueprint class based on it.

113 /365

The SenseGlove Unreal Engine Handbook

Pick Parent Class
COMMON

An Actor is an object that can be placed or spawned in the

@® Actor .
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

S Tl Pawn used by the player.

Game Mode Base defines the game being played, its rules,

) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

(| L H O DETL e added to any actor.

A Scene Component is a component that has a scene

A
ts Scene Component transform and can be attached to other scene ...

ALL CLASSES
¥ SGGameUserSettings

@ Object
@ GameUserSettings

() SGGameUserSettings

3 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

114/ 365

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

» Favorites Q =Tv Q

¥ SGHandbook Q

&= All
I= Content @
i Blueprints

im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate

im Audio

im Blueprints

#m Haptics

i Input

T WERS

i Materials

i Textires

» Collections ® Q

BP_SGGameUser
Settings

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

115/ 365

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameUserSettings as the default
Game User Settings Class.You can do this by navigating to Project Settings >
Engine > General Settings > Default Classes > Advanced > Game User Settings
Class . Once you change the default Game User Settings Class the Unreal
Editor will prompt you with Restart required to apply new settings.For the
changes to take effect, click on the Restart Now button and wait for the editor
to reopen.

Y Project Settings

Engine Q
Al System Medium Font
Animation
Animation Modifiers
Large Font
Audio
Chaos Solver Advanced

Cinematic Camera Default Classes

Control Rig
Cooker

Crowd Manager

ITODD®

Data Driven CVars
Debug Camera Controller
Enhanced Input

Enhanced Input (Editor Only)
b ®

ko
kB ®

Gameplay Debugger

Garbage Collection

General Settings

Hierarchical LOD Default Materials

Input ow atorMaterial v
ator Material

Interchange

Interchange gITF

Interchange MaterialX

Restart required to apply new
settings

Restart Now Restart Later

JiTrace~ @ [=& DerivedData v 2 AllSaved ¥’ Revision Control v

116 / 365

The SenseGlove Unreal Engine Handbook

Setting Up the Virtual Hand Meshes

Setting up Virtual Hand Meshes involves two key steps:

1. Importing the virtual hand meshes into your project.
2. Configuring the virtual hand settings.

In this section we focus on the first part. For detailed information on step two, please
visit the Virtual Hand configuration section.

Compatible Virtual Hand Meshes

The SenseGlove Unreal Engine Plugin is compatible with any virtual hand mesh that
adheres to the Epic rig and bone structure. Additionally, the virtual hand meshes
must be exported with specific settings to meet all requirements. If you're planning
to model and rig your own virtual hand meshes, the Epic FBX Skeletal Mesh Pipeline
is a useful starting point.

However, if you're looking to get up and running with the SenseGlove Unreal Engine
Plugin quickly, the process is much simpler. Unreal Engine has included two sets of
compatible virtual hand models with the Unreal Engine VR Template since version
5.1. This guide will walk you through how to export these virtual hand models from

the VR Template and import them into your VR simulation.

Caution

While it is possible to migrate the virtual hand meshes directly from the Content
Browser of the VR Template, this approach is not recommended. As part of the
setup process, it is necessary to configure the SenseGlove Grab and Touch
sockets. Although it's possible to set up these sockets manually, as
demonstrated in one of our older tutorials, we no longer recommend doing so.
Since version v2.1.0 of the SenseGlove Unreal Engine Plugin, we've included a
tool that automates the socket setup with a single click, eliminating the need for
the tedious manual process.

117 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
https://dev.epicgames.com/documentation/en-us/unreal-engine/fbx-skeletal-mesh-pipeline
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

The SenseGlove Unreal Engine Handbook

Unfortunately, the SenseGlove Sockets Editor tool does not support skeletal
meshes that share their skeleton. This is the case with the hand models
included in the VR Template. Because of this limitation, we will be reimporting
the virtual hand meshes with separate skeletons to ensure full compatibility
with the SenseGlove Sockets Editor.

Exporting the Virtual Hand Meshes from the
VRTemplate

1. Start by creating a new Unreal Engine project using the VR Template. In the
Unreal Project Browser, select GAMES > Virtual Reality .

Unreal Project Browser

——————

RECENT PROJECTS Q‘ ,.W = ’
__‘ IEERERSREEEED

Blank First Person Third Person Top Down

Virtual Reality

GAMES \ ‘ A\
(\ Blueprint Virtual Reality Template using OpenXR for
\ skto d Mobile. The template featu
0 0tIo F [o

S
a2 g
FILM I VID & Handheld AR Virtual Reality Vehicle

LIVE EVENTS g

- ¢ (e BT il &
A 78
- Project Defaults
| :
oal Starter Content

1!

AUTOMOTI

PRODUCT DESIGN &
MANUFACTURING

W

SIMULATION

Project Location C amadou\Desktop\dev Project Name | VRTemplate|

Create Cancel

118 /365

The SenseGlove Unreal Engine Handbook

2. Once the Unreal Editor opens with your new project, navigate to the Content
Browser. Go to All > Content > Characters > MannequinsXR > Meshes . Here,
you'll find two sets of virtual hand meshes: SDkM_MannyXR_left and
SDKM_MannyXR_right (male hands), and SDKM_QuinnXR_left and
SDKM_QuinnXR_right (female hands).

(» File Edit Window Tools Build Select Actor Help VRTemplate
1

A VRTemplateMap

| (o) &, Selection Mode v E Platforms v

b e, -
=_ % Per;pecnve @ Lit I Show ‘- NP 3'@ W TE 10T A 10°— A 0,255 (k1 g8 = Outliner
\ ||—- e\ =v Q

B5 Content Browser x

{:} Settings v

[+ e

Ung d Unsaved

-+ Add Vilmport | Save Al © All > Content > Characters > MannequinsXR > Meshes v £+ Settings @ ltem Label o Type

A VRTemplateMap (Edito

Favorites Q| = (Q ® BP_VRSpectator

Edit VRSpe
VRTemplate Q

= All

& Content
& Characters
& MannequinsXR
EmAnima
i Materials
[Meshes
xtures

ABP_MannequinsXR

SK_MannequinsXR

¢

Skeletal MeshLOD
Settings_

{1 ;';'

SKM_MannyXR_left

i

SKM_MannyXR_right

MannequinsXR 48 actors

| n
il LevelPrototyping
im VR Spectator

¢ Details
mVRTemplate

L1l

SKM_QuinnXR_left SKM_QuinnXR_right

Collections ® Q

7 items

¥5 Content Drawer |8 Output Log Cmd v Jil Trace v =5 Derived Data v

£ All Saved $* Revision Control v

3. Choose the pair of hand meshes you want to export. Right-click on them, then
select Asset Actions followed by Bulk Export... from the context menu.

119/ 365

The SenseGlove Unreal Engine Handbook

0o mE v N E .

4. In the file dialog that appears, choose a folder to save the exported hands, and
clickthe select Folder button to export the meshes in FBX format.

@ Choose A Directory

1+ R This PC Desktop » VRHands

Qrganize ~ New folder

M Desktop b g Date modified
Downloads
E Documents #

»

BH Pictures

No items match your search.

= This PC
3D Objects
A Desktop
E Documents
Downloads
Music
B Pictures
& Videos
e WIN10 (C)

¥ Netwoark

Folder: ‘ |

Select Folder | | Cancel

120/ 365

The SenseGlove Unreal Engine Handbook

5. The Unreal Editor will then display the FBX Export Options dialog. Leave the
default settings unchanged and click Export All to proceed.

121/ 365

The SenseGlove Unreal Engine Handbook

FBX Export Options X

Reset to Default

Current File: C:/Users/mamadou/Desktop/VRHands/Game/Characters/MannequinsXR/Meshes/SK
Exporter
Fbx Export Compatibility FBX 2013
Advanced
ASCII
Force Front XAxis
Mesh
Vertex Color
Level Of Detail
Static Mesh
Collision
Export Source Mesh
Skeletal Mesh
Export Morph Targets
Animation
Export Preview Mesh
Map Skeletal Motion to Root
Export Local Time
Advanced
Bake Camera and Light Animation Bake Transforms

Bake Actor Animation None

Export All Export Cancel All

122/ 365

The SenseGlove Unreal Engine Handbook
Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the
default settings.

6. After exporting, you can find the FBX files for both hands in the directory you
selected:

/path/you/chose/for/bulk/export/Game/Characters/MannequinsXR/Meshes/ .

l B -~ | C:\Users\mamadou\Desktop\VRHands\Game\Characters\MannequinsXR\Meshes
Home Share View
e = = e v Open ~
+ BB PR = .
L] t . § 2 B cait
{ C Copy

opy Paste Move

a Ut o

Clipboard Organize

Delete Rename New Properties)
B folder - P History

Open

v+ R This PC » Desktop » VRHands * Game » Characters > MannequinsXR » Meshes

B Name Date modified Type
> Quick access

| [} :26 3X Fi
§ Deskiop , . SKM_MannyXR_left. FBX 10/08/2024 21:26 FBX File

I SKM_MannyXR _right.FBX 10/08/2024 21:26 FBX File
Downloads

B Documents
B Pictures

& This PC
W 3D Objects
i Desktop
E Documents
Downloads
Music
B Pictures

&5 Videos

i WIN10 (C)

o Network

& Linux

2items |

Importing the Virtual Hand Meshes into Your Own
Project

1. Start by creating a new folder inside your project's Content Browser. Navigate
to that folder, then press the Import button next to the + Add button at the
top of the Content Browser.

123 /365

The SenseGlove Unreal Engine Handbook

File Edit Window T Build Select Actor Help SGHandbook

A Untitled
& Selection Mode v G- i E Platforms v

f= Outliner

-r,c‘) Content Browser x

Add 3y Import @ Save All All > Content > SGHandbook > Settings
+ po ® ontel 00| o] Y & ltem Label o Type
= @ v A Untitled (Editor) World

HLOD
SGHandbook Q Lighting

& All DirectionalLight
[Content nentialHeig
I SGHandbook
i Meshes

Favorites (e}

SM_SkySphere
olumetricClouc

138 actors (138 loaded)

Details x
Drop files here or right click to create content s

Collections ® Q (items

¥5 Content Drawer |8 Output Log Cmd v « =5 Derived Data v 2 All Saved 2 Revision Control v

2.In the Import dialog that appears, navigate to the folder containing the virtual
hand meshes. Select both FBX files and click the Open button.

124/ 365

The SenseGlove Unreal Engine Handbook
Import
<« v 1 R VRHands *» Game » Characters * MannequinsXR > Meshes

Organize ~ New folder

| Desktop

Name Date modified Type

Downloads

E Documents

-
b g
_MannyAr_leTt. g ile
B skmm XR_left.FBX 10/08/2024 21:26 FBX Fil
* B SKM_MannyXR_right.FBX 10/08/2024 21:26 FBX File
»

BH Pictures

9 This PC
9 3D Objects
| Desktop
E Documents
Downloads
Music
BH Pictures
. Videos

i WIN10 ()
& Network

File name: |"SKM_MannyXR_left. FBX" "SKM_MannyXR_right.FBX"

3. The Unreal Editor will display the FBX Import Options dialog. Leave the default
settings unchanged and click Import A1l to proceed.

125/ 365

The SenseGlove Unreal Engine Handbook

FBX Import Options X

Import Skeletal Mesh (?) Reset to Default
Current Asset: /Game/SGHandbook/Meshes/SKM_MannyXR_left
Mesh
Skeletal Mesh
Import Mesh

Import Content Type Geometry and Skinning Weights. v

None v
Skeleton
Advanced
Animation
Import Animations
Animation Length
Advanced
Transform
Import Translation
Import Rotation
Import Uniform Scale
Miscellaneous
Convert Scene

Force Front XAxis
126 / 365

The SenseGlove Unreal Engine Handbook

Convert Scene Unit

Material
Search Location 0C3 v

Material Import Method Create New Materials

Import All Import

Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the
default settings.

4, After the import process is done, a dialog will display the import logs. Any
errors or warnings encountered during the import process will be shown here.

127/ 365

The SenseGlove Unreal Engine Handbook

£y Message Log

Anim Blueprint Log
t Check

t Reimport

/\ No smoothing group information was found in this FBX scene. Please make sure to enable

t Tools

t Virtualization
Automation Testing Log
Blueprint Log
Build and Submit Errors
Compiler Log
Control Rig Log
Editor Errors
FBX Import (1)
HLOD Results
Lighting Results
Load Errors
Localization Service (1)
Map Check (1)
Packaging Results
Packed Level Actor Log
Play In Editor
Revision Control (6)
Slate Style Log
Trace Analysis

Note

The following warning can be safely ignored:

FBXImport: Warning: No smoothing group information was found in this FBX
scene. Please make sure to enable the 'Export Smoothing Groups' option 1in
the FBX Exporter plug-in before exporting the file. Even for tools that
don't support smoothing groups, the FBX Exporter will generate appropriate
smoothing data at export-time so that correct vertex normals can be

inferred while importing.

5. The imported virtual hand meshes should now appear in the folder you
selected in the Content Browser. Unreal Engine will create a Skeletal Mesh, a
Skeleton, and a Physics Asset for each imported mesh, along with a default
Material asset shared between both virtual hand meshes.

128 /365

o File Edit Window Tools Build Select Actor
(Ar)

A Untitled

= &, Selection Mode v

B5 Content Browser x

<+ Add Vjlmport @ Save Al ©

Favorites (e}

v Q
SGHandbook Q
= All
F& Content
I SGHandbook
i Meshes

*

MI_Manny_02 SKM_MannyXR_|eft

Material

m MM

* *
SKM_MannyXR_right
sset _Skeleton

Collections @ Q7 jtems (1 selected)

¥5 Content Drawer |8 Output Log Cmd v

All > Content > SGHandbook > M

m m

SKM_MannyXR_left_

SKM_MannyXR_right

The SenseGlove Unreal Engine Handbook

a1 Platforms v

)

£+ Settings

M

SKM_MannyXR_right

* *

SKM_MannyXR_left_
Skeleton

JilTrace~ @) (@ =8 DerivedData v

SGHandbook

f= Outliner
=vi(Q

L olled Un
®> & Item Label »

A Untitled (Editor)

ar
scapesirea

©, LandscapeStrea
© LandscapeStrea Landscap
©, LandscapeStrea
©, LandscapeStrea
@ | anderaneQtrea

138 actors (1 selected)
¢ Details X

© LandscapeStrear =+ Add =Z of
© LandscabeStreaminaProxy_4_3_0 (Insi

B x

LoD

Transform

&% 7 Unsaved $* Revision Control v

6. You can choose to keep or modify the default material. However, since the
SenseGlove Unreal Engine Plugin provides a default material, we choose to
delete the default material created by Unreal Engine during the import process.
We'll assign the SenseGlove default material to the imported virtual hand
meshes in the next steps. Right-click on the default material and select Delete.

129/ 365

The SenseGlove Unreal Engine Handbook

¥5 Content Browser x
<+ Add Vylmport & Save Al © All > Content > SGHandbook »

Favorites Q =v Q

SGHandbook Q

= All
& Content
& SGHandbook
EESES =

MI_Manny_02 el b atea] MannyXR_ KM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_

Create Material Instance __Skeleton right right_PhysicsAsset right_Skeleton

Material 2 Edit..
Rename
Duplicate CTRL+D
Save CTRL+S

Delete DELETE
Asset Actions POl Delete the selected items.

Asset Localization >

ow in Folder View

i Copy Reference
Copy File Path
Reference Viewer...
Size Map...
Audit Assets...
Shader Cook Statistics...
Connect to Revision Control...
Open Material.h
& View Documentation

Collections ® Q 7 items (1 selected)

5 Content Drawer [Output Log md v

7.In the Delete Assets dialog, click Force Delete to confirm the deletion of the

default material.

130/ 365

The SenseGlove Unreal Engine Handbook

Delete Assets

Pending Deleted Assets

Asset Class Asset Referencers Memory Reference
MI_Manny_02 Material 2 References

Some of the assets being deleted are still referenced in memory.

How do you want to handle this?

Delete the asset anyway, but referencers may
not work correctly anymore.

Use as a last resort.
Force Delete

8. Open the Skeletal Mesh asset for the left hand and assign the
M_SenseGlove_VirtualHand material from the Asset Details panel.

131/365

File Edit Asset Window Tools Help

@ SKM_MannyXR_leftx X

Preview Animation ~ 2} Create Asset v

_— =
Character || L uto

5.95.15

B5 Content Drawer [Output Log Cmd v

The SenseGlove Unreal Engine Handbook

) Reimport Base Mesh » ;% *
<= Skeleton Tree x

2
Name

< root
< hand_|
" index_metacarpal_|
<" index_01_|
< index_02_|
< index_03_l

/ middle metacarpal |

» x1,0 >

" Asset Details x

Q

W Material Slots

2 Details

Material Slots

Element 0

Morph Target ..

1 Material Slots

/" Curves

. Preview Scene...

== Re;

®

M_SenseGlove_VirtualHand v
©
€ KB Slot

W LOD Picker

O I I I} LoD

Auto (LODO)

&% 6 Unsaved

£ Revision Control v

9. Repeat the process for the Skeletal Mesh asset of the right hand, and assign the

M_SenseGlove_VirtualHand material in the Asset Details panel.

File Edit Asset Window Tools Help

@& SKM_MannyXR_rightx x

Preview Animation~ &, Create Asset v
— — _
Character || L uto

#5 Content Drawer [Output Log Cmd v

V1 Reimport Base Mesh : > ;% *

£z Skeleton Tree ~ x
2

Name

" root

» x1,0 »

' AssetDetails x & Details

(o}

w Material Slots
Material Slots 1 Material Slots

Element 0

Morph Target...

. Preview Scene...

B o

®

ve_VirtualHand v

: . M.S :
jht ©
ate €k Slot

w LOD Picker

onp

LOD Auto (LODO)

= 6 Unsaved

132 /365

v

$* Revision Control v

The SenseGlove Unreal Engine Handbook

10. Return to the Content Browser by closing all asset windows and click the save
A1l button to save all imported virtual hand mesh assets to disk.

File Edit Window Too Build Select Actor Help

SGHandbook
A Untitled

€ Selection Mode v v v

a8 Platfor

-r,d Content Browser x

Add Yy Import & Save All All > Content > SGHandbook
+ = © onte o0 4 Item Label

A, Untitled (Editor)
HLOD
SGHandbook Q_

Lighting
&= All 5+, DirectionalLight
V& Content
#m SGHandbook
i Plugins

Favorites Q =v Q

SkyLight

SM_SkySphere
eleton ZéR,nghl S.SKIZ"Q‘/‘;?I1YXR’IIQ'1‘ @ VolumetricClouc

SKM_MannyXR_left SKM_MannyXR_left_ M_MannyXR_left_
Phy: t

138 actors (138 loaded)

Details X

Collections ® Q gitems

B5 Content Drawer B Output Log Cmd v

Ji Trace v @ [=B Derived Data v & 6 Unsaved £* Revision Control v

11.In the save Content dialog, choose Save Selected to confirm the saving all
action.

133 /365

The SenseGlove Unreal Engine Handbook

Save Content

Select Content to Save

Asset a File Type

SKM_MannyXR_left /Game/SGHandbook/SKM_MannyXR_left /Script/Engil
SKM_MannyXR_left_PhysicsAss /Game/SGHandbook/SKM_MannyXR_left_Ph' /Script/Engi
SKM_MannyXR_left_Skeleton = /Game/SGHandbook/SKM_MannyXR_left_Ske /Script/Engi
SKM_MannyXR_right /Game/SGHandbook/SKM_MannyXR_right /Script/Engi
SKM_MannyXR_right_PhysicsAs /Game/SGHandbook/SKM_MannyXR_right_P /Script/Engi
SKM_MannyXR_right_Skeleton /Game/SGHandbook/SKM_MannyXR_right_S| /Script/Engi

Save Selected Cancel

Setting up the Rigid Bodies

1. Open the Physics Asset for the left virtual hand mesh by double-clicking it in the
Content Browser. This will open the PhAT (Physics Asset Tool) editor, where the
virtual hand mesh for the left hand will appear with a default physics body,
usually shaped as a capsule.

134/ 365

The SenseGlove Unreal Engine Handbook
m File Edit Asset Window Tools Help
/ @® SKM_MannyXR_left_Ph.. x

= D Preview Mesh v Preview Animation v 'ﬁ' Reference Pose A Create Asset v

#z Skeleton Tree X = .‘; Perspective | @ Lit Show Physics ® Character)| LOD Auto # Details . Preview Sce.
+ Q fo 2 dies or bounds, T0UFA)

traints
Sollislurn

I Tools x Profiles
‘W Body Creation

Min Bone Size

Primitive Type

Vertex Weighting Dominant Weight v

Auto Orient to B

Walk Past Small.

Create Body for

Disable Collisi

Advanced

Constraint Creation

Create Constraints

Angular Constrai. Limited v

Generate All Bodies

¥5 Content Drawer [Output Log Cmd v 2 All Saved 2 Revision Control v

2.In the Tools panel, under the Body Creation section, locate the Primitive
Type dropdown and select Box instead of the default Capsule shape. Then,
clickthe Generate All Bodies button at the bottom of the Tools panel to
create a new physics body.

m File Edit Asset Window Tools Help

@® SKM_MannyXR_left_P.. * x

= | (o) Preview Mesh v Preview Animation v -ﬁ— Reference Pose '(','_ Create Asset v (?/ o

iz Skeleton Tree X = .’; Perspective | @ Lit Show Physics ® Character 4 » | & Details x & Preview Sce.

@ v

d_|

4 Tools X Profiles
w Body Creation
Min Bone Size
Primitive Type
Vertex Weighting Dominant Weight ~
Auto Orient to B.
“H @l Walk Past Small.
Create Body for
Disable Collision
» Advanced
w Constraint Creation
Create Constraints

Angular Constrai. Limited v

O I » Generate All Bodies

¥5 Content Drawer [Output Log Cmd v = 1 Unsaved 2 Revision Control v

135/ 365

The SenseGlove Unreal Engine Handbook

3. After generating the new body, some adjustments are required for optimal
interactions inside your VR simulations. Press the r key on your keyboard to
enter scaling mode and use the arrows to resize the physics body. To
reposition the body, press the w key to switch to translation mode. For
adjusting the rotation, press the e key. Toggle between these modes as
needed to fine-tune the physics body to your requirements.

> File Edit Asset Window Tools Help
()
@® SKM_MannyXR_left_P.. + x

a
= 5 Preview Mesh v Preview Animation v Reference Pose Create Asset v o

=
<z Skeleton Tree x = & Per:-;ecuve @Lit Show Physics Character ¢ Details x ¢ Preview Sce
+ © 1 Bo_dis_fs_ (1 Consideredifordpunds, 100%)
@ = 1 anmvg: (1 Box). - Q
Name 0 Constraints ‘ ; Physics Current Profile: Non
0 Collision Interactions
@hand_|

B &

Body
hand_|
1 shape(s)

Limited v

O 1nn Re-generate Bodies
5 Content Drawer |8 Output Log cmd v

& 1Unsaved $” Revision Control v

4.You can always revisit and adjust the rigid body later after testing its impact in
your VR simulations. For now, save the asset and close the PhAT editor.

136 / 365

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help
(AL)
@® SKM_MannyXR_left_P... » x
nimation v c Create Asse &

ctive Show 3 LOD Auto M B x10 N k o 2N 4N >) £ Details

1 Badias (1 Considarad for bounds, 100%) Q

1 Primitivas (1 Box)
) Corpsirainis Physics Current Profile: Non¢

Name 13t ;
0 Gollizion Intarzictions

@hand_|

x @3 Profiles

> Graph

Body
Constraint Creation

hand |
1 shape(s)
aints
Limited v
(:) 112 Re-generate Bodies

29 Revision Contro
3’ Revision Control v

tent Drawer B Output Log BEJCmd v
5. Repeat the same procedure for the right virtual hand mesh.

Note

An older yet still relevant video tutorial demonstrating a similar procedure is
also available.

Setting up throwing objects and physics settings for the rea...

137/ 365

https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

Setting up the SenseGlove Grab and Touch Sockets

To ensure the Grab/Release and Touch systems function correctly, multiple sockets
must be set up on each virtual hand mesh with precise locations and rotations.
Before version v2.1.0 of the SenseGlove Unreal Engine Plugin, this was a manual
and time-consuming process. However, with the v2.1.0 release, the plugin now
includes the SenseGlove Sockets Editor, a built-in tool specifically designed for this
task.

Note

If for any reason you still prefer to manually set up the sockets, a detailed video
tutorial is available.

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F...

Accessing the SenseGlove Sockets Editor
The SenseGlove Sockets Editor can be utilized in three ways:

1. By right-clicking on any Skeleton or Skeletal Mesh asset inside the Unreal
Content Browser.

138 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA
https://www.youtube.com/watch?v=jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

Create

Edit...

Rename F2
Duplicate CTRL+D
Save CTRL#S

l
Il
it

Delete DELETE
Asset Actions >
Asset Localization >

Add SenseGlove Sockets
Clear Existing Sockets

| Output Log 5 Content Browser x 75 Show in Folder View

<4 Add Vilmport |@ Save All © All > Content > SGHandbook) Sl iR L+ Settings

Favorites

v Q Copy Reference

Copy File Path
SGHandbook -
Reference Viewer... ALT+SHIFT+R
T All

ze Map... A
Content :
M M Audit Assets... ALT+SHIFT+A

Shader Cook Statistics...

—. .. _ & 8 Connect to Revision Control... e
SKM_MannyXR_ SKM_MannyXR_ SKM_MannyX sKM_MannyXR_
left left_PhysicsAsset left_Skeleton Open Skeleton.h ight_Skeleton

¥ View Documentation
Skeleton

Collections ® Q 6 items (1 selected)

¥5 Content Drawer [Output Log Cmd v

JiiTracev @ @ =
Tip

You can also perform Sockets Editor actions in bulk by selecting multiple assets
of the same type and right-clicking on one of them. Note that if the selected
assets are not all of the same type, Sockets Editor actions will not appear (e.g.
selecting assets of type Skeletons and Skeletal Meshes together).

139 /365

The SenseGlove Unreal Engine Handbook

4 tem Label «

A, Untitled (Editor)
HLOD

Lighting
225, DirectionalLight
& ExponentialHeightFog
) * SkyAtmosphere
ki M SkyLight

Create

5 % SM_SkySphere
Duplicate 1L z @ VolumetricCloud
Save CTRL+S = /4 Landscape
Delete DELETE 3 P PlayerStart
Asset Actions > | © WorldDataLayers-1
Asset Localization > % © WorldPartitionMiniMap

Add SenseGlove Sockets
Clear Existing Sockets

enseGlove or otherwise

Show in Folder View CTRL+B
e & % Show in Explorer 138 actors (138 loaded)
> Content > SGHandbook L+ Settings . petails p
Copy Reference s
Copy File Path
Reference Viewer... ALT+SHIFT+R
Size Map. ALT+SHIFT+M

Al

Audit Assets... ALT+SHIFT+A
Shader Cook Statistics...
Connect to Revision Control...

.. ®.... . 8 r... _ ®&.. _ ® Diff Selected

SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_

left left_PhysicsAsset left_Skeleton right right_PhysicsAsset right_Skeleton Open Skeleton.h
View Documentation

Skeleton e c Skeleton

2. From the Asset menu in the Skeleton Editor or Skeletal Mesh Editor for any
open Skeleton or Skeletal Mesh asset.

File Edit [Asset® Window Tools Help
A SKMM: Q
| &) B P) . Create Ass) Anim Notifies Retarget Manager V3 Import Mesh % Make Static Mesh Add SenseGlove Sockets > ,g‘
5 Find in Content Browser... CTRL+B.
¥ Q : Copy References vy > <10
Copy Paths
Name Reference Viewer...
" root Size Map...
¢ hand_| Audit Assets.
" index_metaca Shader Cook Statistics.
¢ index 01 Connect to Revision Control...
< index_02
< Remove Unused Bones from Skeleton
- middle_m
Update Skeleton RefPose

</ middle_01_
7 middle.02. Test Skeleton Curve Metadata for Use

/" middle_0

Details X

Add SenseGlove Sockets
¢ pinky_metaca, Clear Existing Sockets
¢ pinky_01_|
2 pinky.0 Clears all sockets; SenseGlove or otherwise
" pinky_03_|
" ring_metacarpal_|
" ring_01_1
</ 1ing_02_|
+ ring.

< thumb_01_| %) Animation W5 Asset Brow.

" thumb_0:
\ =+ AddCurve Q Find/Replace Curves

" thumb_0:
=v (Q

Curve Name Type

3. From the Skeleton Editor or Skeletal Mesh Editor toolbar for any open Skeleton
or Skeletal Mesh asset.

140/ 365

The SenseGlove Unreal Engine Handbook

The SenseGlove Sockets Editor currently offers two actions:

1. Add SenseGlove Sockets :Which adds and sets up the SenseGlove grab and
touch sockets to any virtual hand mesh that adheres to the Epic rig and bone
structure.

2. Clear Existing Sockets:which destructively clears all existing sockets;
SenseGlove or otherwise, from any mesh.

Important

Simply performing any of these actions won't permanently modify your assets.
In fact, if you close the Unreal Editor without saving your assets first, all changes
performed by the SenseGlove Sockets Editor will be lost forever. This is by
design and the plugin will leave this final choice to the user. So, in order to apply
the changes permanently, you must save the assets manually.

Adding the SenseGlove Sockets

When you invoke the Add SenseGlove Sockets action, the Sockets Editor will prompt
you for confirmation:

141/ 365

The SenseGlove Unreal Engine Handbook

Message X

ii Do you want to add the SenseGlove sockets?

Yes No

If it succeeds at adding the standard SenseGlove sockets, you will receive a
confirmation message:

Message X

i‘_\ Successfully added the SenseGlove grab and touch sockets. If you wish the changes to
. persist, save the modified asset(s) now!

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the newly added sockets:

142/ 365

The SenseGlove Unreal Engine Handbook

File Edit Asset Window Tools Help

)

SKM_MannyXR_left* 7 SKM_MannyXR_left_S... * x @ SKM_MannyXR_rightx SKM_MannyXR_right_.
Preview Mesh v Preview Animation v '4'_,_ Create As (@ Anim Notifies &% Retarget Manager > ,g-‘ o

+ Q foxv = i LOD Auto || P> x1,0 c » > || # Details x # Preview Scene

Name : : : Q

root 9% Socket Parameters
< hand_|
! GrabAttachPoint
" index_metacarpal_| ; = - X hand_|
" index_01_ elative Locatio ! 50 661
7 in |
< index_03_|
#! TouchIndexCollider
#! GrablndexCollider
" middle_metacarpal_|
" middle_01_|
/" middle_02_|
" middle_03_|
#! TouchMiddleCollider - -+ Add Curve Q Find/Replace Curves.
#! GrabMiddleCollider) =- @

GrabAttachPoint

@ Anim. [3 t.. / Curves

pinky_metacarpal_| Curve Name Type Bones Max L

< pinky_01_|
" pinky_02_|
" pinky_03_|
#! TouchPinkyCollider
" ring_metacarpal_|
< ring 01_1
< ring_02_|

drngoal L

¥5 Content Drawer |8 Output Log Cmd v & 4Unsaved 2 Revision Control v

To ensure the changes persist, save the assets to disk.

Note

The Add SenseGlove Sockets action can fail for various reasons, so it's
important to investigate and identify the cause if an issue arises.

Message X

Failed to add the SenseGlove sockets!

143/ 365

The SenseGlove Unreal Engine Handbook

Message X

Failed to add the SenseGlove sockets to '/Game/SGHandbook/
SKM_MannyXR_left_Skeleton.SKM_MannyXR_left_Skeleton’!

OK

Important

A common cause of failure is that the SenseGlove sockets have already been set
up, or the meshes you're using already have the necessary sockets. In this case,
consider using the Clear Existing Sockets action first.

Caution

Another common cause of failure is if your virtual hand meshes share a
skeleton. As noted in the Compatible Virtual Hand Meshes section, the
SenseGlove Sockets Editor does not support skeletal meshes that share their
skeleton. You may need to export and re-import the virtual hand meshes inin a
compatible manner first.

In any case, the SenseGlove Sockets Editor reports all failures in the Unreal Editor
logs. To view and investigate the logs, simply head to the window menu and click on
Output Log:

144/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#clearing-all-existing-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#compatible-virtual-hand-meshes
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#exporting-the-virtual-hand-meshes-from-the-vrtemplate
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#importing-the-virtual-hand-meshes-into-your-own-project

The SenseGlove Unreal Engine Handbook

File Edit | Window Tools Build Select Actor Help

k. Untitled Q
= Cinematics E Platforms v
i =K & Perspective /5 Content Browser

DISENE
ImgMedia
Outliner

= Viewports

I World Partition
Env. Light Mixer

Layers
Levels

«- Light Mixer
Place Actors
Variant Manager
World Settings

Device Output Log
Message Log

Qutput Log
Open the Output Log tab.

Open Marketplace

¥5 Content Browser > Quixel Bridge

Add 37 Impc > SGHandbook
+ : Load Layout > >0

b Favorites Save Layout

« SGHandbook Remove Layout

= All Enable Fullscreen SHIFT+F11
& Content
SGHandbook
Bl Plugins

SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_
left left_PhysicsAsset left_Skeleton right right_PhysicsAsset right_Skeleton

Skeleton

For example, in the following screenshots the following errors are stated: Socket
'GrabAttachPoint' already exists on

' /Game/SGHandbook /SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a
duplicate! .

145/ 365

The SenseGlove Unreal Engine Handbook

LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp FSGAssetUtils::FImpl::AddSocket 394]
Socket 'GrabAttachPoint' already exists on

' /Game/SGHandbook /SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a
duplicate!

LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp

FSGAssetUtils: :FImpl::AddGrabAttachPointSocket 442] Failed to add the socket
'GrabAttachPoint' to '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp
FSGAssetUtils: :FImpl: :AddSenseGloveSockets 587] Failed to add the grab attach
point socket to asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp

FSGAssetUtils: :FImpl::AddSenseGloveSockets 741] Failed to add the SenseGlove
sockets to the asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!

s Help

B Output Log

Clearing All Existing Sockets

When you invoke the Clear Existing Sockets action, the Sockets Editor will ask for
your confirmation:

146 / 365

The SenseGlove Unreal Engine Handbook

Message X

f‘_\ Are you sure you want to clear all the existing sockets? This cannot be undone!

Yes No

If successful, you will receive a message indicating all the existing sockets have been
cleared:

Message X

Successfully cleared all the existing sockets! If you wish the changes to persist, save
the modified asset(s) now!

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the affected assets with all sockets cleared:

147 / 365

The SenseGlove Unreal Engine Handbook

Window Tools Help
SKM_MannyXR_left_S... *

| (9) ev esl & atio Create Anim Notifies Retarget Manager
Q

LOD Auto N P> x1,0 3]

Name Pravisiying Ref=rines Posa
- LODAD!
" root Currant derzan Sz 1,325
hand_| riznglas: 5,730
" Variicas: 3,23
UVICHANT B!
Avorog Siza: 152049

Anim B5 Asset... /" Curves x
Add Curve Q_ Find/Replace Curves
= v (Q

Curve Name Type Bones Max

" ring_03_l
< thumb_01_|
< thumb_02_1

o Content Drawer | Output Log] Cmd v

Configuring the SGPawn and Plugin Virtual Hand
Mesh Settings

The final step in setting up the virtual hand meshes is to configure the SGPawn and
Plugin virtual Hand Mesh Settings to ensure they utilize the newly created virtual
hand meshes.

Please visit Setting Up SGPawn, The Virtual Hand Mesh Settings, and how to setup
the Wrist Tracking Hardware sections for more information.

SGPawn Configuration

In the sGPawn Blueprint class, make sure to assign the appropriate Skeletal Mesh
Asset to the following components:

® HandLeft
e HandRight

148/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

® RealHandLeft
® RealHandRight

This ensures that the correct hand meshes are used for both virtual and real hands.

File Edit set View Debug Windov
(40)
BP_SGPawn x

= e : wgbiffv @Find °g HideUnrelated : £} ettings | # Class Defaults B, Simulation > : No debug object selected v

Components. = Viewport f tructio. %2 EventGraph X # Details X

+aAdd Q % b > t Grapt tal mesh asset

£ BP_SGPawn (Self)
sunce | Right-Click to Create New Nc
sualizerRight) Editin C++
Editin C++
htThumbFin Editin C++ ‘,Tr g off pins to build functionality. <=
dd Editin C++ %Sm
Right Index Fin er (Rig ge a del Editin C++
Right Thumb Fi C
itin C++
) Editin C++

Editin C++ -

Editin C++ [|
M vyBlueprint X

+aAdd Q

P B artnd T U

& Event Tick
B Compiler Results x
FUNCTION:

tructionSeript

VARIABLES

5 Content Drawer B Output Log BEcmd v ® Allsaved P’ Revi:

Plugin Virtual Hand Mesh Settings

Next, navigate to Project Settings > Plugins > SenseGlove > Virtual Hand Settings
> Mesh Settings and specify the correct left and right-hand meshes for:

e Left Hand Reference Mesh

® Right Hand Reference Mesh

This configuration guarantees that the tracking system correctly interprets the bone
transforms of the virtual hand meshes when generating FXRMotionControllerData .

Additionally, it allows the animation system to accurately use these bone transforms
when processing FXRMotionControllerData and animating the virtual hand meshes.

149/ 365

The SenseGlove Unreal Engine Handbook

u N Project Settings

Android SM5 Material Quality - Vulkan Q
HoloLens .
Plugins - SenseGlove
Import
i0S Material Quality
Linux ¢ a e ini, which is currently writable

Window

Plugins
AndroidFil
AVF Media
Dataflow

Fractu

IMG M
L
Modeling Mode Too
ara
gara Editor
OpenXR Input
Paper 2
Python

RenderDoc

irtualHand_Left SK

WMF Media

tualHand_Right SK_Se twalHand_Right

150/ 365

The SenseGlove Unreal Engine Handbook

Setting Up the Wrist Tracking Hardware

To enable the SenseGlove Unreal Engine Plugin to track the gloves position and
rotation in the world, you need to specify a positional tracking hardware, referred to
as Wrist Tracking Hardware within the plugin. By default, if the Wrist Tracking
Hardware is not explicitly set, the plugin will attempt to automatically detect it by
identifying your Head-mounted display (HMD) hardware. However, this auto-
detection feature may not be entirely reliable, as it is still experimental, and it may
occasionally fail.

For detailed information, please visit the Wrist Tracking Hardware and HMD auto-
detection configuration section.

151/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

The SenseGlove Unreal Engine Handbook

Setting up the Grab/Release System

Setting up the SenseGlove Grab/Release System involves two main steps. The first
step, configuring the virtual hand meshes for both real and virtual hands, is handled
automatically by the plugin. The second step, which is also straightforward, involves
setting up any existing actor in the Unreal Blueprint Editor that you want to respond
to with haptic feedback when your SenseGlove device comes into contact with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into
contact with it.

2.In the components panel, clickthe + Add button, then type SGGrab into the
Search Components input field. Once found, click on sGGrab to add it to the
current actor. You can rename the sGGrab component to your desired name.

A(File Edit Asset View Debug Window Tools Help
BP_SimpleCube* x

= i@ Compile i =g Diff v fDFind % HideUnrelated : $f Class Settings # Class Defaults B, simulation

Components x = \Viewport f Construction Sc ®: Event Graph x . Details
o JE n [>
X SG

o — Right-Click to Create New Nodes.

A, FEWrist Tracker

2, Hevirtual Hand

Rkl
M My Blueprint SGGrab Component

+Add Q

GRAPHS

% EventGraph
& Event BeginPlay
€ Event ActorBeginOverlap
€ Event Tick

FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

Components
Cube

EVENT DISPATCHERS @

¥5 Content Drawer |8 Output Log Cmd v & 2Unsaved $* Revision Control

3. With the sGGrab component selected in the components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the
grab/release system to suit your needs.

152/ 365

The SenseGlove Unreal Engine Handbook

A(File Edit Asset View Debug Window | Tools Help
BP_SimpleCube* x

= | (o] 3(Zompw\e H '0- Diff v @ Find *g Hide Unrelated : {:} Class Settings ,/ Class Defaults P Simulation

Components x = Viewport f Construction Sc ®: Event Graph x . Details

+Add Q

© BP_SimpleCube (Self)

LY s > o}

Sense Glove

§Z Cube

& sasab Right-Click to Create New Nodes.

M My Blueprint x
+Add Q
GRAPHS
% EventGraph
& Event BeginPlay
€ Event ActorBeginOverlap
€ Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

Components
SGGrab

0,0
Cube

¥5 Content Drawer |8 Output Log Cmd v & 2Unsaved $* Revision Control

Note

Any property prefixed with Attachment is a parameter directly passed to
Unreal's FAttachmentTransformRules during the grab process, while any
property prefixed with Detachment is a parameter directly passed to Unreal's
FDetachmentTransformRules during the release process.

Caution

If AttachmentSocketName is unspecified, or incorrect the grabbable object will be
attached to the root bone of the virtual hand mesh, which probably is not ideal.

4. A key setting for the release system is located within your sGpawn instance. In
the Details panel for your sGPawn, find the Max Number of Hand Velocity
samples setting and adjust it according to your needs. This setting determines
the velocity of objects released from the hands by averaging the specified

number of frames. Optimizing this value depends on the framerate of your
simulation at runtime.

153 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window — o X

Oveview* BP_SimpleSp! BP_SGPawn X SGPawn

(A1)

= [&) ng Compile 3 -0' Diff v @ Find °*% Hide Unrelated : LF Class Settings | ¢ Class Defaults B, simulation »

Components X = Viewport JF Constructi % Event Graph x . Details X

+Add Q N~ [> Event Gra X MaxNum B &

£ BP_SGPawn (Self) Sense Glove

Scene Root (SceneRoot) Edit in C++ Right_click to Create New Max Number Of Ha

Tracker Right (WristTrackerRight) Ei
$Z Controller Visualizer Right (ControllerVis
“% Hand Right (HandRight) Edit in C++
®£ Right Thumb Fingertip Grab Collider (Rig
M My Blueprint x
+Add Q &
GRAPHS ®
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

EVENT DISPATCHERS

Bp Content Drawer | Output Log cmd v & 2Unsaved §* Revision Contro

5. One last aspect of the grabbable actors to take into account for the grab
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
grabbable actor, it's necessary to set the Collision Presets tO Block All
inside the Details panel for the actor's mesh components.

154/ 365

The SenseGlove Unreal Engine Handbook

A(File Edit sset View Debug Window
Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= j Compile i =g Diff v @ Find *g HideUnrelated : {0F Class Settings ¢ Class Defaults B Simulation >

Components = Viewport JF Constructi % Event Graph x . Details X

+Add Q nv > 1t Graph X Collision|

© BP_SimpleCube (Self) Collision

v §% Cube Right_click to Create New Simulation Generates Hit Events

SGGrab
SGTouch

M My Blueprint
+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES B Compiler R
Components
SGGrab

SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

6. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are

crucial for notifying the grab system when the virtual hand meshes come into
contact with the actor.

155/ 365

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window T

Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= i@ Compile : =g Diff v @ Find * HideUnrelated i {3f Class Settings ¢ Class Defaults imulation >

Components X = Viewport J Constructi = Event Graph x . Details X

+ Add (e} n v [S > 1t Graph X Generate| B &

© BP_SimpleCube (Self) Physics
S Right-Click to Create New - x=«
rab

SGTouch
Collision

Simulatio tes Hit Events

[) Events
M My Blueprint i pEven

+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS [©)
™ tructionScript
MACROS [©)
ULUEEES [©] B Compiler R
Components
SGGrab
SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

e Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

156 / 365

https://youtu.be/jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F...

e SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

Setting up throwing objects and physics settings for the rea...

157 / 365

https://www.youtube.com/watch?v=jN4VcfXVrTA
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

Setting up the Touch System

Configuring the SenseGlove Touch System involves two key steps. The first step,
which is automatically handled by the plugin, is configuring the virtual hand meshes
for both real and virtual hands. The second step, which is also straightforward,
involves setting up any existing actor in the Unreal Blueprint Editor that you want to
respond to with haptic feedback when your SenseGlove device comes into contact
with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into

contact with it.

2.In the components panel, clickthe + Add button, then type SGTouch into the
Search Components input field. Once found, click on sGTouch to add it to the
current actor. You can rename the sGTouch component to your desired name.

A(File Edit Asset View Debug Window Tools Help

BP_SimpleCubex x

i | :.03 Compile * -0' Diff v @ Find *g Hide Unrelated : L Class Settings ~ # C Defaults B, Simulation

[¢] Components x = Viewport f Construction Sc %2 Event Graph x - Details
ey (. n = >

XSG
e Right-Click to Create New Nodes.

L, FEWrist Tracker

2, §evirtual Hand

R
M My Blueprint SGTouch Component

+Add Q
GRAPHS
®: EventGraph
€ Event BeginPlay
€ Event ActorBeginOverlap
& Event Tick
FUNCTIONS
¢ ConstructionScript
MACROS
VARIABLES

Components
Cube

EVENT DISPATCHERS @

5 Content Drawer |8 Output Log Cmd v & 2Unsaved §* Revision Control

3. With the SGTouch component selected in the Components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the touch

158 /365

The SenseGlove Unreal Engine Handbook

system to suit your needs.

A(File Edit Asset View Debug Window Tools Help
BP_SimpleCubex x
= i@ Compile : =g Diff v fDFind % HideUnrelated : $F Class Settings ¢ Class Defaults B, simulation

[¢] Components x = \iewport F Construction Sc %= Event Graph x RALEENS

+Ad Q R~ o > Q

© BP_SimpleCube (Self) Sense Glove

% Cube = -
& seroi Right-Click to Create New Nodes. —

Vibr

Rendering
M My Blueprint x

+Add Q
GRAPHS
®: EventGraph
€ Event BeginPlay
€ Event ActorBeginOverlap
& Event Tick
FUNCTIONS
¢ ConstructionScript
MACROS Component Replication
VARIABLES Component Replicates

Components Activation
SGTouch
Cube

Autc
Cooking

5 Content Drawer |8 Output Log Cmd v & 2Unsaved §* Revision Control

4, One last aspect of the touchable actors to take into account for the touch
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
touchable actor, it's necessary to set the Collision Presets tO Block All
inside the petails panel for the actor's mesh components.

159/ 365

The SenseGlove Unreal Engine Handbook

A(File Edit sset View Debug Window
Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= j Compile i =g Diff v @ Find *g HideUnrelated : {0F Class Settings ¢ Class Defaults B Simulation >

Components = Viewport JF Constructi % Event Graph x . Details X

+Add Q nv > 1t Graph X Collision|

© BP_SimpleCube (Self) Collision

v §% Cube Right_click to Create New Simulation Generates Hit Events

SGGrab
SGTouch

M My Blueprint
+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES B Compiler R
Components
SGGrab

SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

5. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are

crucial for notifying the touch system when the virtual hand meshes come into
contact with the actor.

160/ 365

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window T

Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= i@ Compile : =g Diff v @ Find * HideUnrelated i {3f Class Settings ¢ Class Defaults imulation >

Components X = Viewport J Constructi = Event Graph x . Details X

+ Add (e} n v [S > 1t Graph X Generate| B &

© BP_SimpleCube (Self) Physics
S Right-Click to Create New - x=«
rab

SGTouch
Collision

Simulatio tes Hit Events

[) Events
M My Blueprint i pEven

+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS [©)
™ tructionScript
MACROS [©)
ULUEEES [©] B Compiler R
Components
SGGrab
SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

e Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

161 /365

https://youtu.be/jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

SenseGlove UE Tutorial 07 | Setting up Grabbing & Haptic F...

e SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

Setting up throwing objects and physics settings for the rea...

162/ 365

https://www.youtube.com/watch?v=jN4VcfXVrTA
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://www.youtube.com/watch?v=K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

The Plugin Settings

Once the SenseGlove Unreal Engine Plugin is enabled the plugin settings can be
accessed through Edit > Project Setting... inside your project's Unreal Editor.

Edit Window Tools Build Select Actor Help

E Platforms v

Undo History

'+ Editor Preferences...
Project Settings. ..
Plugins

Change the settings of the currently loaded project.

The SenseGlove Unreal Engine Plugin offers fine-grained control over various
aspects of its functionality through its settings system. It also allows you to override
specific settings from subcomponents when possible. In the following sections, we
will explore the settings and the override system in detail.

163 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

> File Window Tools Help
(4r) .
& Project Settings

Plugins Q

AndroidFil Plugins - SenseGlove

Export... Import...
saved in DefaultSenseGloveSettings.ini, which is currently writable

meras Editor

Settings Categories

The plugin settings are organized into four main categories, and each of those might
contain its own sub-categories. These main categories are as follows:

e The Initialization Settings
e The Game User Settings
e The Tracking Settings

e The Virtual Hand Settings

164/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/

The SenseGlove Unreal Engine Handbook

The Plugin Initialization Settings

The Initialization Settings section is designed to control how the SenseGlove Unreal
Engine Plugin is initialized, allowing you to customize its behavior to suit your
project's needs.

Sense Glove

“ﬂﬂﬂ“zﬂﬂﬂPEHIHPQE

Validate if Default C

bValidatelfDefaultClassesAreSGCompliant

If enabled, the plugin tries to check and validate whether the default for classes such
as GameMode, Gamelnstance, etc. are indeed SenseGlove classes or SenseGlove-
derived classes. If not, it attempts to set them. If you don't like this behavior for
whatever reason, consider disabling this option.

By default, this option is disabled.

Caution

Due to the current initialization mechanism, setting the default classes might
occasionally fail. Therefore, it's essential to verify that the default classes have
been correctly set. You can do this by checking the following sections in the
project settings:

® Project Settings > Project > Maps & Modes > Default Modes > Default
GameMode

® Project Settings > Project > Maps & Modes > Default Modes > Selected
GameMode > Default Pawn Class

® Project Settings > Project > Maps & Modes > Default Modes > Selected

GameMode > Player Controller Class

165/ 365

The SenseGlove Unreal Engine Handbook

® Project Settings > Project > Maps & Modes > Game Instance > Game
Instance Class
® Project Settings > Engine > General Settings > Default Classes >

Advanced > Game User Settings Class

For more information visit the SenseGlove default classes.

166 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/

The SenseGlove Unreal Engine Handbook

The Game User Settings

The Game User Settings control the behavior of the SenseGlove instance of
UGameUserSettings . The USGGameUserSettings class extends the functionality of
UGameUserSettings to provide enhanced customization options specifically for
applications that utilize the SenseGlove Unreal Engine Plugin.

Game User Set

Hardware Benchmarking Settings

Work Scale
CPUMultiplier

GPUMultiplier

167 / 365

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings

The SenseGlove Unreal Engine Handbook

The Hardware-benchmarking Settings

The settings in this section are utilized by the

USGGameUserSettings: :SetEngineScalabilitySettings() method when the
Scalability parameter is set to ESGEngineScalabilitySettings::Auto.When the
engine scalability settings set to auto the graphics settings are determined by
running a hardware benchmark by calling the

UGameUserSettings: :RunHardwareBenchmark() . The settings listed here are basically
the parameters passed to UGameUserSettings::RunHardwareBenchmark() .

Game Use
Hardware Benchmarking Settings

Work Scale

CPUMultiplier

GPUMultiplier

WorkScale

The workScale parameter determines the intensity of the benchmark test. Higher
values result in more intensive testing, which can help achieve more accurate
scalability settings.

The default value is 10.

CPUMultiplier

The cPuMultiplier parameter allows you to adjust the impact of CPU performance
on the benchmark results. Increasing this value will emphasize CPU performance
more heavily in determining scalability settings.

168 /365

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings/RunHardwareBenchmark

The SenseGlove Unreal Engine Handbook

The default valueis 1.0f.

GPUMultiplier

The GPuMultiplier parameter lets you modify the influence of GPU performance on
the benchmark outcomes. A higher value will increase the weight of GPU
performance in setting scalability.

The default value is 1.0f.

169/ 365

The SenseGlove Unreal Engine Handbook

The Tracking Settings

The tracking settings are primarily used by the SenseGlove Tracking module and
are divided into various subsections, each focusing on a specific aspect of tracking.
These subsections, along with the other settings directly provided by this section,
provide comprehensive control over the tracking functionalities. The subsections are
as follows:

e The Glove-tracking Settings
e The Hand-tracking Settings
e The HMD-tracking Settings
e The Wrist-tracking Settings

Tracking Settings

Fallback to Hand Tracking if No Glove Detected

Glove Tracking Settings

Hand Tracking Settings
HMDTracking Settings
Wrist Tracking Settings

Virtual Hand Settings

bFallbackToHandTrackinglfNoGloveDetected

Determines whether to fallback to hand-tracking, or not, when no SenseGlove device
is detected:

o If disabled, only a real glove will be tracked.
o Ifenabled, the plugin will fall back to hand-tracking when it's available and
supported by the HMD device.

Note

170/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

The SenseGlove Unreal Engine Handbook

Disabling this option hides the hand-tracking settings section, while enabling it
makes the hand-tracking settings visible.

Glove Tracking Settings

Provides the tracking settings related to SenseGlove devices.

Hand Tracking Settings

The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

HMD Tracking Settings

Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.

Wrist Tracking Settings

Provides the tracking settings applicable to wrist-tracking hardware.

171/ 365

The SenseGlove Unreal Engine Handbook

The Glove-tracking Settings

Provides the tracking settings related to SenseGlove devices.

Fallback to Hand Tracking if Mo Glove Detected
Glove Tracking Settings

tivity Check Interval

HMDTracking Settings

Wrist Tracking Settings

GloveConnectivityCheckinterval

The interval in which the tracking module checks for glove connectivity.

The default is 16.666666f which means 60 times per second.

172/ 365

The SenseGlove Unreal Engine Handbook

The Hand-tracking Settings

The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

Tracking Settings
Fallback to Hand Tracking if No Glove Detected
Glove Tracking Settings
Hand Tracking Settings
Use More Specific Motion Source Names

Support Legacy Controller Motion Sources

HMDTracking Settings

Wrist Tracking Settings

bUseMoreSpecificMotionSourceNames

If disabled, (the default) the motion sources for hand tracking will be of the form
[Left|Right] [Keypoint] . If enabled, they will be of the form
HandTracking[Left|Right] [Keypoint] . It is recommended to be enabled to avoid
collisions between motion sources from different device types.

173 /365

The SenseGlove Unreal Engine Handbook

bSupportLegacyControllerMotionSources

If enabled, hand tracking supports the Left and Right legacy motion sources. If
disabled, it does not. It is recommended to be disabled unless you need legacy
compatibility in older unreal projects.

174/ 365

The SenseGlove Unreal Engine Handbook

The HMD-tracking Settings

Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.
Tracking Se
Fallback to Hand Tracking if No Glove Detectec
Glove Tracking Settings
HMDTracking Settings

Vive HMDDetection Priority HTC VIVE Focus 3 First

Wrist Tracking Settings

ViveHMDDetectionPriority

Determines which VIVE HMD to prioritize for detection, as the current detection
mechanism cannot differentiate between the HTC VIVE Focus 3 and the HTC VIVE XR
Elite.

175/ 365

The SenseGlove Unreal Engine Handbook

The Wrist-tracking Settings

Provides the tracking settings applicable to wrist-tracking hardware.

Tracking Settings
Fallback to Hand Tracking if Mo Glove Detected
Glove Tracking Settings

HMDTracking Settings

Wrist Tracking Settings

Tracking Hardware None
Left Hand Motion Source
Right Hand Motion Source

Debugging Settings

TrackingHardware

Specifies the type of tracking hardware to use. If set to None, the plugin attempts at
HMD auto-detection to automatically specify a compatible tracking hardware. If set
to custom, aby desired location and rotation can be specified.

At the moment the following hardware are supported:

e Quest 2 Controllers

Quest 3 Controllers

Quest Pro Controllers

VIVE Focus 3 Wrist Trackers
VIVE Trackers

176/ 365

The SenseGlove Unreal Engine Handbook
Wrist Tracking Settings

Tracking H e None
None
Custom
VIVE Tracker
Quest 2 Controller
VIVE Focus 3 Wrist Tracker

Quest Pro Controller

Visible when Hand Data Unavailable Quest 3 Controller

Caution

HMD auto-detection is currently an experimental feature and may fail because
HMD vendors occasionally change the properties utilized by the plugin for HMD
detection. If you encounter issues, such as incorrect tracker offsets, it is
recommended to explicitly specify the tracking hardware.

Caution

Due to highly experimental nature of the HMD auto-detection feature, the HTC
VIVE Focus 3 and HTC XR Elite cannot be distinguished from each other in the
current iteration. However, since the tracker devices and offsets for both
headsets are the same, this should not affect performance or functionality. The
order in which the HMD is detected can be specified through the HMD-tracker
setting ViveHMDDetectionPriority .

TrackingHardwareLocationOffsetLeftHand

Sets a custom location offset for left hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

177 /1 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority

The SenseGlove Unreal Engine Handbook

TrackingHardwareLocationOffsetRightHand

Sets a custom location offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom .

TrackingHardwareRotationOffsetLeftHand

Sets a custom rotation offset for left hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

TrackingHardwareRotationOffsetRightHand

Sets a custom rotation offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

LeftHandMotionSource

Determines the motion source for the left hand. For Oculus HMDs, this is usually
Left, and for VIVE HMDs, it's typically LeftFoot .

Note

178 /365

The SenseGlove Unreal Engine Handbook

For VIVE devices using SteamVR, the motion source hardware for the left hand
can be specified by the user through the SteamVR app.

RightHandMotionSource

Determines the motion source for the right hand. For Oculus HMDs, this is usually
Right, and for VIVE HMDs, it's typically RightFoot .

Note

For VIVE devices using SteamVR, the motion source hardware for the right hand
can be specified by the user through the SteamVR app.

DebuggingSettings

Provides debugging options for visually debugging the wrist tracker.

Overriding the Wrist-tracking Settings from the Wrist
Tracker Component

It's possible to override some of the wrist tracker settings through the details panel
of any specific Wrist Tracker Component. When overriden by enabling the
SenseGlove > Wrist Tracking Settings Override > Override Plugin Settings option
inside the details panel, these settings take precedence over the plugin's global
settings.

179 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html

File Edit A

ew

View Del Window 0 Help

&

Project Settings 8 pl

i@ compile I ®igDiffv @Find @ Hide Unrelated

Componen X

+ Add Q

= Viewport
n~
Pawn (Self)

Scene Root (SceneRoot) Editin C++
w Ay, Wrist Tracker Right (WristTrackerRight) Editin C++

$# Controller Vi Right (ControllerVisual Rigl

‘% Hand Right (HandRight) Edit in C++

%% Right Thumb Fingertip Grab Collider (RightThumbF
Right Middle Fingertip Grab Collider (Right\M leFi
Right Index Fingertip Grab Collider (RightindexFing
Right Thumb Fingertip Touch Collider (RightThumk
Right Ind
Right Middle Fingertip Tou
Right Ring Fingertip Touch C

Right Pinky Fingertip Touch Collider (RightPinkyFir
M My Blueprint
+aAdd Q

GRAPHS

nt ActorBeg
© Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS

VARIABLES

B5 Content Drawer B output Log EICmd v

The SenseGlove Unreal Engine Handbook

180/ 365

o debug objec
& Details

Q

Sockets

Depth Priority
Thic
Component Tick

h Tick Enat

on Control v

The SenseGlove Unreal Engine Handbook

The Wrist-tracking Debugging Settings

Provides debugging options for visually debugging the wrist tracker.

Tracking Settings
Fallback to Hand Tracking if No Glove Detected
Glove Tracking Settings
HMDTracking Settings
Wrist Tracking Settings
Tracking Hardware None
Left Hand Motion Source Left
Right Hand Motion Source Right
Debugging Settings
Draw Debug Wrist Tracker
Debug Wrist Tracker Settings
Length
¥hxis Color
YAxis Color
ZAxis Color
Persistent Lines
Life Time Modifier
Depth Priority
Thickness

Virtual Hand Settings

181 /365

The SenseGlove Unreal Engine Handbook

bDrawDebugWristTracker

If enabled, visualizes the debug wrist trackers where possible.

DebugWristTrackerSettings

Visible and valid only if bbrawbDebugGizmo is enabled.

182 /365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Settings

The Virtual Hand Settings are utilized by various SenseGlove modules such as Debug,
Editor, Tracking, and the main module. These settings are divided into several
subsections, each focusing on a specific aspect of the virtual hand functionality.
Together with the settings provided directly in this section, they offer comprehensive
control over any system or component that utilizes the virtual hand. The subsections
are as follows:

e The Animation Settings
e The Debugging Settings
e The Grab Settings

e The Haptics Settings

e The Mesh Settings

e The Touch Settings

Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings

Debugging Settings

Grab Settings

Haptics Settings
Mesh Settings

Touch Settings

bVisibleWhenHandDataUnavailable

Used by the Virtual Hand Component to determine its visibility when no hand data,
either from a SenseGlove or hand-tracking, is available. If enabled, the virtual hand
mesh remains visible even when no data is available. By default, this setting is

183 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html

The SenseGlove Unreal Engine Handbook

disabled, providing users of the simulation with a clear indicator that no hand data is
currently available.

Animation Settings

Controls how the virtual hand model is animated by the animation system.

Debugging Settings

Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.

Grab Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The sGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

Haptics Settings

Utilized by the haptics system.

184/ 365

The SenseGlove Unreal Engine Handbook

Mesh Settings

Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

Touch Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The sGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

Overriding the Virtual Hand Settings from the Wrist
Tracker Component

It's possible to override some of the virtual hand settings through the details panel
of any specific Virtual Hand Component. When overriden by enabling the SenseGlove

> Virtual Hand Settings Override > Override Plugin Settings option inside the
details panel, these settings take precedence over the plugin's global settings.

185/ 365

File Edit A

ew
i@ Compile :

Componen X
+ Add Q
Pawn (Self)

Scene Root

ntroller Vi

= & Hand Right (HandRight)

Right Mi
Right Index Fing
Right Thumb Fing
Right Ind

Right Mi

eneRoot)
2r Right (WristTr

Right (Controlle

The SenseGlove Unreal Engine Handbook

View Del Window Help

& Project Settin & pi BP_SGPawn*

sghifft~ @Find @ Hide Unrelated

= Viewport

& Details

Q

Materials

Right-Click to Create New N« ..

Event Graph X

n~

Editin C++
Editin C++
Rigl

ckerRight)

Sense Glove

Unavailable

e Fingertip Tou

Right Ring Fingertip Touch C

Right Pinky Fingertip Touch Collider (RightPinkyFir

M My Blueprint
+aAdd Q

GRAPHS

nt ActorBeg
© Event Tick
FUNCTIONS
~*f ConstructionScript

MACROS

VARIABLES

B5 Content Drawer

B output Log

Component Tick

h Tick Ena

EICmd v

186 / 365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Animation Settings

Controls how the virtual hand model is animated by the animation system.

Unavailable

ply Bone Location

AnimationBoneRotationCorrectionOffset

Specifies the offset to apply to each bone's rotation when translating hand pose data
to the virtual hand bones. This is useful if the virtual hand mesh was imported with
an initial rotation. For example, the virtual hand model shipped with Unreal Engine's
VRTemplate typically has an initial 90.0f degrees rotation on the yvaw axis. By
default, this option has been set up with the Unreal Engine's VRTemplate virtual
hand model in mind.

bShouldAnimationApplyBonelLocation

When enabled, the animation system applies the joint locations to the current virtual
hand mesh bones in addition to the joint rotation. Otherwise, only the joint rotations
are applied, and joint locations are ignored, leaving the bone locations untouched on
the virtual hand mesh when animating it. Enabling this option typically improves the
virtual hand animation. By default, this option is enabled.

187 / 365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Debugging Settings

Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.
Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings
Debugging Settings
Draw Debug Virtual Hand
Drawing Mode Mone
Grab Settings
Haptics Settings

Mesh Settings

Touch Settings

bDrawDebugVirtualHand

If enabled, visualizes the debug virtual hand where possible.

DrawingMode

Determines the virtual hand drawing mode. If set to CubicJoints, for every joint a
debug cube will be drawn. If set to GizmoJoints, for every joint a debug gizmo will be
drawn.

188 /365

The SenseGlove Unreal Engine Handbook

DebugCubicHandSettings

Visible and valid only if bDrawDebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode: :CubicJoints.

firtual Hand

Drawing Mode Cubic Joints

DebugGizmoHandSettings

Visible and valid only if bDrawbebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode: :GizmoJoints .

189 /365

The SenseGlove Unreal Engine Handbook
Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings
Debugging Settings

Draw Debug Virtual Hand

Drawing Mode Gizmo Joints

Debug Gizmo Hand Settings

Length
XiAxis Color
Yixis Color
Ziyis Color
Persistent Lines
Life Time Modifier
Depth Priority
Thickness

Grab Settings

Haptics Settings

Mesh Settings

Touch Settings

190/ 365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Grab Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The sGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

Virtual Hand Settings

ta Unavailable

GrabAttachPointSocketName

The default socket name for the grab attach point, usually located at the palm of the
hand.

191/ 365

The SenseGlove Unreal Engine Handbook

GrabAttachPointSocketTransform

The default socket transform (location, rotation, scale) for the grab attach point,
usually located at the palm of the hand.

DefaultColliderSize

The default collider size for the fingers' grab colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's grab collider, usually located at the
tip of the thumb finger.

IndexColliderSocketName

The default socket name for the index finger's grab collider, usually located at the tip
of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's grab collider, usually located at the
tip of the middle finger.

192/ 365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Haptics Settings

Utilized by the haptics system.

Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings

Debugging Settings

Haptics Settings

Auto Stop All Haptics on End Play

Mesh Settings

Touch Settings

bAutoStopAllHapticsOnEndPlay

Forces all haptics to stop automatically on the EndPlay event. This is useful for
situations where the simulation has ended, but ongoing haptic feedback might
remain active on the glove indefinitely. By default, this setting is enabled.

193 /365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Mesh Settings

Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

Left Hand Reference Mesh None

Right Hand Reference Mesh None

Distal Phal

Thumb

Ring

virtualHand_Left'

Hand_Right'

LeftHandReferenceMesh

The virtual hand model for the left hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FxRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh

194/ 365

The SenseGlove Unreal Engine Handbook

compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints
data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

RightHandReferenceMesh

The virtual hand model for the right hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FXRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh
compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints
data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

195/ 365

The SenseGlove Unreal Engine Handbook

DistalPhalangesLengthSettings

The length of distal phalanges that cannot be retrieved from any virtual hand mesh
compliant with the Epic standard rig. Also, the SenseGlove Hand Pose format does
not provide these. This is used by SenseGlove Tracking module to calculate an
FXRMotionControllerData the all 26 joints. The values you specify here depend on
the shape of the virtual hand mesh and the defaults are approximated for the virtual
hand model shipped with the Unreal Engine VRTemplate.

RootBoneRotationCorrection

Used mostly by the SenseGlove Tracking module and sGPawn to offset for any initial
rotation during the virtual hand mesh import process. This is the case for example
with the virtual hand model shipped with Unreal Engine's VRTemplate, which
typically has an initial -90.0f degrees rotation on the vaw axis. By default, this
option has been set up with the Unreal Engine's VRTemplate virtual hand model in
mind.

LeftHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

RightHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

196 / 365

The SenseGlove Unreal Engine Handbook

LeftHandBoneNames

Read-only and for internal use only.

RightHandBoneNames

Read-only and for internal use only.

DefaultLeftHandMeshPath

Read-only and for internal use only.

DefaultLeftHandMeshPathOnly

Read-only and for internal use only.

DefaultRightHandMeshPath

Read-only and for internal use only.

DefaultRightHandMeshPathOnly

Read-only and for internal use only.

197 / 365

The SenseGlove Unreal Engine Handbook

The Virtual Hand Touch Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The sGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

Data Unavailable

TouchPinkyCollider

DefaultColliderSize

The default collider size for the fingers' touch colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's touch collider, usually located at the
tip of the thumb finger.

198 /365

The SenseGlove Unreal Engine Handbook

IndexColliderSocketName

The default socket name for the index finger's touch collider, usually located at the
tip of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's touch collider, usually located at the
tip of the middle finger.

RingColliderSocketName

The default socket name for the ring finger's touch collider, usually located at the tip
of the ring finger.

PinkyColliderSocketName

The default socket name for the pinky finger's touch collider, usually located at the
tip of the pinky finger.

199 /365

The SenseGlove Unreal Engine Handbook

Overriding The Plugin Settings

The override system allows you to customize and override the global settings for the
SenseGlove Unreal Engine Plugin through specific subcomponents where applicable.
This feature enables more precise control over the behavior of individual
components within your project.

The SenseGlove Virtual Hand Component

The Virtual Hand Component provides the ability to override certain aspects of the
global plugin settings, allowing for tailored interactions and behaviors specific to
virtual hands. For more details, refer to the Virtual Hand Settings section.

The SenseGlove Wrist Tracker Component

The Wrist Tracker Component enables overriding of specific global plugin settings,
providing flexibility in wrist tracking configurations. For additional information, see
the Wrist-tracker Settings section.

200/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/#overriding-the-virtual-hand-settings-from-the-virtual-hand-component
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/#overriding-the-wrist-tracking-settings-from-the-wrist-tracker-component

The SenseGlove Unreal Engine Handbook

The SenseGlove Console Commands

The SenseGlove Unreal Engine Plugin offers a variety of utility console commands to
enhance your development experience.

Important

To ensure the SenseGlove console commands are registered and recognized by
Unreal Engine, set the default Game Instance class to SGGameInstance or a
subclass of it. This can be done through: Project Settings > Project > Maps &
Modes > Game Instance > Game Instance Class . Failing to do so will resultin the
error: Command not recognized: SG_x in the logs. For more details, refer to

SGGameInstance.

SGGameUserSettings Console Commands

Caution

Before running any of the following console commands, ensure that the default
Game User Settings class is set to SGGameUserSettings or a subclass of it. This
can be configured via: Project Settings > Engine > General Settings > Default
Classes > Advanced > Game User Settings Class . Failure to set this correctly will
cause your simulation or editor to crash upon calling any of the following
console commands. For more information, refer to SGGameUserSettings .

SG_GetEngineScalabilitySettings

This console command prints the current Engine Scalability Settings to the logs.

201/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

SG_SetEngineScalabilitySettings

This console command sets the Engine Scalability Settings for both the current game
and the editor. It accepts a Scalability parameter with the following valid values:

® Low

® Medium

e High

e Epic

® (Cinematic

® Auto

Note

The Auto option is used for benchmarking purposes. It will adjust the engine
scalability settings to one of the other levels based on the benchmarking
results.

202/ 365

The SenseGlove Unreal Engine Handbook

Deploying to Android (Standalone)

Epic Games provides official documentation for setting up Unreal projects targeting
Android:

e Setting Up Android SDK and NDK for Unreal
e Android Quick Start

Here are a few important notes to consider:

e Since SenseGlove provides native libraries built for Android, it's crucial to
consult the Platform Support Matrix before deciding to deploy your project to
Android.

e Currently, all third-party native libraries are built against Android NDK API Level
29.

e On Meta Quest devices, building against Android SDK API Level 29 or 32 has
been tested and is supported.

e Avideo tutorial on deploying to Oculus Quest devices and Android is also
available.

SenseGlove UE Tutorial 06 | Deploying to Quest 2 and Andro...

Caution

203/ 365

https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-android-sdk-and-ndk-for-unreal
https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-unreal-engine-projects-for-android-development
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://youtu.be/zU8Nf4ssOO0
https://www.youtube.com/watch?v=zU8Nf4ssOO0

The SenseGlove Unreal Engine Handbook

As noted in the v2.1.0 release changelog, since this release enabling the Meta XR
plugin, —and potentially the VIVE OpenXR plugin— alongside the SenseGlove
Unreal Engine Plugin in the same project will disrupt the OpenXR functionality
provided by the SenseGlove Unreal Engine Plugin, rendering it unusable.

Although the SenseGlove OpenXR +implementation is fully compatible with the
IOpenXRHMD -interface and the FOpenXRHMD XRTrackingSystem, it is not
compatible with the FOculusXRHMD backend provided by the Meta XR plugin.
The same -qissue likely applies to the VIVE OpenXR plugin. So, 1if these
plugins are enabled in your project, the SenseGlove OpenXR will not
function as intended, effectively breaking the plugin's functionality. It
seems these plugins are necessary in order to make the fallback to the
hand-tracking feature work on Android. While we may add support and
compatibility with Meta XR and VIVE OpenXR plugins in the future, for the
time being, if your project requires these plugins, we advise continuing
with the v2.0.x release of the SenseGlove Unreal Engine plugin until this

issue 1is addressed.

This also means that although the SenseGlove Unreal Engine Plugin is able to
produce FXRMotionControllerData for SenseGlove devices just fine, the hand-
tracking on Android won't work. So, the fallback to hand-tracking mechanism on
Android is broken at the moment.

204 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

The SenseGlove Unreal Engine Handbook

Upgrade Guide

The transition from v2.0.x to v2.1.x introduces numerous changes, including
several breaking changes. The effort required to upgrade your project will vary
depending on its complexity and which features of the SenseGlove Unreal Engine
Project you are using. However, if you are working with a simple Blueprint project like
SGBasicDemo, the upgrade process is quite straightforward. We successfully
upgraded SGBasicDemo to SGBasicDemo-OpenXR by following the procedure
outlined below.

These are the notable changes that might affect your project:

e The SenseGlove Virtual Hand and Wrist Tracker components no longer rely on
the SenseGlove Hand Pose data from the underlying SenseGlove API. Instead,
they use FXRMotionControllerData .

e The virtual hand animation system has been revamped to use
FXRMotionControllerData and no longer relies on SenseGlove Hand Angles. This
means the virtual hand meshes are animated using world space transforms
instead of parent bone space transforms.

e The Allbreaker virtual hand meshes have been removed and are no longer
supported as they are incompatible with the new OpenXR tracking and
animation system.

Caution
Please consult the changelog before upgrading your project to see if any change
affects or breaks your current project.

Note

For upgrading older versions of the plugin to v2.e.0, a YouTube tutorial is
available.

205/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/VbWfoep-Hsg

The SenseGlove Unreal Engine Handbook

SGBasicDemo v2: upgrading your projects to the SenseGlov...

1. Remove the existing Plugins/SenseGlove folder from your project.

2. Obtain the latest v2.1.x version of the plugin either from the Epic Games
Launcher or Microsoft Azure DevOps Repositories and place it in the
Plugins/SenseGlove folder that you've just removed.

3. It might be best to clean up and remove the following folders from your project
before generating the project files or attempting to open your project with the
Unreal Editor. This might prevent a certain class of build issues:

- Binaries
- Intermediate
- Saved

4, Build your project using your favorite IDE if it's a C++ project, or open your
project's .uproject file with the Unreal Editor and wait for the Editor to build
the necessary binaries and open the project.

5. Remove the Allbreaker virtual hand meshes if you are using them, as they are
no longer compatible with the new animation system.

6. Import and set up a set of compatible virtual hand meshes such as the
VRTemplate virtual hand meshes, and configure the materials, rigid bodies, and

206 / 365

https://www.youtube.com/watch?v=VbWfoep-Hsg
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/

The SenseGlove Unreal Engine Handbook

the SenseGlove Grab and Touch Sockets using the SenseGlove Sockets Editor.

7.Set up the SGPawn to use the new virtual hand meshes for the HandLeft,
HandRight , RealHandLeft, and RealHandRight components.

8. Adjust the Virtual Hand Mesh Settings and ensure the Left Hand Reference
Mesh and Right Hand Reference Mesh are set correctly.

9. Check and adjust the Virtual Hand Animation Settings as needed.

10. You might also want to set up the Wrist Tracking Hardware to use the new
experimental HMD auto-detection feature. This allows the plugin to
automatically configure the wrist tracking hardware at runtime, rather than
limiting your builds to a specific HMD.

11.Set up the sGGameInstance and SGGameUserSettings if you want to use the new
SenseGlove console commands or take advantage of the Engine Scalability
Settings to achieve higher framerates in your project.

12. Additionally, the latest release introduces the ability to use hand-tracking as an
alternative to SenseGlove hardware—albeit without haptic feedback—for rapid
development and testing. It's also recommended to enable the Fallback to
HandTracking if No Glove Detected feature to seamlessly switch to hand-
tracking when a glove isn't connected.

13. If all steps have been followed correctly, your project should now be fully
compatible with the new plugin release.

207 / 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/#setting-up-the-senseglove-grab-and-touch-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html

The SenseGlove Unreal Engine Handbook

Optimizing Your Project for Higher FPS

Enhancing the performance and framerate of Unreal Engine VR applications,
whether running standalone or streaming from a PC, can sometimes be challenging
depending on the nature of your project. This guide will walk you through generic
strategies that can significantly boost your project's performance and framerate

with minimal effort.

Meta Quest Link Advanced Graphics Preferences

When streaming from a PC to Meta Quest devices, the default refresh rate is set at
72 Hz . However, you can increase this to 120 Hz, which not only enhances the
refresh rate but also reduces the rendering resolution, potentially improving
performance. Follow these steps to make the adjustment:

1. Open the Meta Quest Link app and navigate to the Devices tab.

208 /365

The SenseGlove Unreal Engine Handbook

Search

Home
Store Devices
Library
Events

Devices
Quest 3 and Touch

Settings Active

Quest 3 Connected
Left Touch
Right Touch

Pair device

Follow list

Notifications

Quest 2 and Touch

Help Centre Not Connected

2. Choose the device for which you would like to tweak the refresh rate.

209/ 365

The SenseGlove Unreal Engine Handbook

Home
Store
Library
Events
Devices

Settings

Quest 3 and Touch
@ Connected and Active

® USB 3 connection recommended

Quest 3 Microphone ~
Set the input volume for your Quest 3 microphone
)
Follow list

Quest 3 Headphones ~

Notifications Set the output volume for your headset speakers and

headphone jack
Help Centre

<)

3.In the device settings, scroll down to the Advanced section and select Graphics

Preferences .

210/ 365

The SenseGlove Unreal Engine Handbook

HISal v AUUIL U CUTIpULE
Home Hear VR audio from both your headset and
default computer audio device

Store

Hear Computer Audio in VR

LR Hear computer audio from your headset

. when using your desktop in VR
vents

Devices
Settings Graphics Preferences

Refresh Rate (72 Hz)
Rendering Resolution (4128 x 2208)

Device Setup

USB Test

Quest 3 Support

Follow list

Notifications

Help Centre

4. Choose your desired refresh rate. In this case select a refresh rate of 120 Hz.
After making your selection, click ok, and the Meta Quest Link app will restart
to apply the changes.

211/ 365

The SenseGlove Unreal Engine Handbook

Graphics Preferences

Set your Quest 3 graphics preferences. Recommended settings are based
on your computer’s specs. Learn More

Refresh Rate

72 Hz (Recommended)
80 Hz
90 Hz

® 120 Hz

Automatic (Recommended)

Save & Restart

5. Once the Meta Quest Link app restarts, go back to the pevices tab, select your
device, and confirm the refresh rate setting under Advanced > Graphics

Preferences .

212 /365

The SenseGlove Unreal Engine Handbook

HISal v AUUIL U CUTIpULE
Home Hear VR audio from both your headset and
default computer audio device

Store

Hear Computer Audio in VR

LR Hear computer audio from your headset

. when using your desktop in VR
vents

Devices
Settings Graphics Preferences

Refresh Rate (120 Hz)
Rendering Resolution (3200 x 1728)

Device Setup

USB Test

Quest 3 Support

Follow list

Notifications

Help Centre

6. Now, open your Unreal Engine project and navigate to Project Settings.
Under Engine > General Settings > Framerate, you can fine-tune and
experiment with the framerate settings to match your project's requirements.

213/ 365

The SenseGlove Unreal Engine Handbook

& Project Settings

Engine al
Al System Anim Blueprints
Animation
Animation Modifiers
Audio Framerate
Chaos Solver

Cinematic Camera

Min 1200
ol Rig

Cooker

Crowd Manager

Data Driven CVars
Debug Camera Controller
Enhanced Input
Enhanced Input (Editor Only)
Gameplay Debugger
Garbage Collection
General Settings
Hierarchical LOD

Input

Interchange

Interchange gITF
Interchange MaterialX

Landscape

Game User Settings and Engine Scalability Settings

Unreal Engine offers predefined graphics quality profiles known as Engine Scalability
Settings, which can be easily adjusted to optimize performance. These settings can
be modified directly within the Unreal Editor through the Settings menu on the
toolbar or dynamically at runtime using code. Importantly, these settings are
universal, meaning changes made in the Unreal Editor will apply to the game when
run in PIE (Play In Editor) mode, and settings adjusted via code will also affect the
editor itself.

214/ 365

Quality Low

Resolution Scale

View Distance Near
Anti-Aliasing Low
Post Processing Low
Shadows Low
Global lllumination Low
Reflections Low
Textures Low
Effects Low
Foliage Low
Shading Low

Medium

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Monitor Editor Performance?

Note

SGGameUserSettings .

The SenseGlove Unreal Engine Handbook

Cinematic

Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic

Item Labe

A, Ove

v

ICF Settings v

™ World Settings
& Project Settings...

% Plugins

Allow Translucent Selection
Allow Group Selection

Strict Box Selection

Box Select Occluded Objects
Show Transform Widget

Show Subcomponents

Engine Scalability Settings
Material Quality Level

Preview Rendering Level

Volume « @

Enable Actor Snapping
Distance ®
Enable Socket Snapping

Enable Vertex Snapping
Enable Planar Snapping

Hide Viewport Ul
Previewing

T

CTRL+SHIFT+G

CTRL+SHIFT+K

The SenseGlove Unreal Engine Plugin includes specialized console commands
that allow you to switch between different Engine Scalability Settings on the fly.
Please note that these commands require you to set up SGGamelnstance and

In order to switch between various Engine Scalability Settings, you can use the Get

Game User Settings Blueprint function and then cast it to SGGameInstance.

215/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

All Actions for this Blueprint Context Sensitive

X Get Game User Settings|

Sense Glove
Game Framework
Game User Settings

F Get Engine Scalability Settings
Settings
f
Settings

vi |Get Game User Settings

Important

Unreal Engine's default Blueprint functions only allow you to set Engine
Scalability Settings to Low or Epic.To access the full range of settings,
SGGameUserSettings extends Blueprint access to all Engine Scalability Settings
and includes hardware benchmarking to detect the optimal settings. Therefore,
it's essential to make sGGameUserSettings oOr a subclass of it the default Game
User Settings class to utilize all these features.

216 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

The following Blueprint code from the SGBasicDemo-OpenXR example scene
demonstrates how to bind numeric keys 1 to 5 to set various Engine Scalability
Settings, and key o to utilize hardware benchmarking to determine the optimal
Engine Scalability Settings:

e 0:Use hardware-benchmarking to determine the optimal Engine Scalability
Settings.

e 1:Set Engine Scalability Settings to Low .

e 2:Set Engine Scalability Settings to Medium .

e 3:Set Engine Scalability Settings to High.

e 4:Set Engine Scalability Settings to Epic.

e 5:Set Engine Scalability Settings to Cinematic .

View Deby

=ig Diff v SDFind *g Hide Unrelated gs 4 aults : No debug object selected v

[Components x = ; c x 2 Details
+ Add e

Use hardware benchmarking to determine the optimal engine scalability settings

F Get Game User Settings 7% Cast To SGGameUserSettings F Set Engine Scalability Settings
L=—=

Return Value Object

Set engine scalability settings to Low
- 7 Get Game User Settings 3 Cast To SGGameUserSettings F Set Engine Scalability Settings
» »—»

Retumn Value Object

Set engine scalability settings to Medium

F Get Game User Settings %3 Cast To SGGameUserSettings

MAcROS g » P =———up
VARIABLES Retu alue Object

EVENT DISPATCHERS

|8 OutputLog ~ EJCmd v

217 /365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window Tools Help
B Output Log BP_SGPawn

=gDiffv @Find *Q HideUnrelated :

Details

Set engine scalability settings to High

&3 F Get Game User Settings ¥ Cast To SGGameUserSettings F Set Engine Scalability Settings
Pressed - ———— B PR ==L

rab er
Released > Retum Value Object Cast Failed > Game User Set

rab Collider (

 Right In p Grab C Ky,

£ Right Thum

Set engine scalability settings to Epic

F Get Game User Settings %3 Cast To SGGameUserSettings F Set Engine Scalability Settings
» —====0 [===)
Return Value Object Cast Failed Game User Settings

As SGGame User Settings Scalability
Epic

Ea5

Set engine scalability settings to Cinematic

FUNCTIONS

Cons cript F Get Game User Settings ¥% Cast To SGGameUserSettings F Set Engine Scalability Settings
MACROS e =D =P

VARIABLES Released [Return Value Object Cast Failed D Game User Settings
EVENT DISPATCHERS Key As SGGame User Settings Scalability

§ i T -
ntentDrawer |8 OutputLog [Cmd ~ B &7omPiler Restits: B Allsaved 3

Tip

The SGBasicDemo-OpenXR includes an example 3D widget actor that displays
the current FPS and Engine Scalability Settings. This widget can be placed within
a VR scene and is located in A1l > Content > Blueprints > UI >
BP_FPS3DWidget . The underlying UMG widget can be found at A1l > Content >

Blueprints > UI > WB_FPS within the Content Browser for the SGBasicDemo-
OpenXR example scene.

218/ 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

The SenseGlove Unreal Engine Handbook

#. Class Defaults | 3

FUNCTIONS
MACROS
VARIABLES

=

EVENT DISPATCHERS
Details

(o}

Defauit

| Outputlog EZICmd v ® AllSaved }? Revis

Optimizing Unreal Projects for Mobile

We have the SGBasicDemo-OpenXR project, which has been optimized for mobile.
You can explore the project configuration by reviewing the settings inside the
Config folder and compare them with your own project settings. In addition, here
are some crucial guidelines and settings that you may want to adjust for further
optimization:

General Rendering Settings

Forward Shading: Enable Forward Shading for better performance. It's more
efficient on mobile platforms.

219/ 365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

Q

Forward Renderer

Forward Shading

Vertex Fogging for Opaque

Translucency

Separate Translucency

Translucent Sort Policy Sortby Distance v
Translucent Sort Axis 0,0
Local Fog Volume Apply on Translucent

Enable Order Independent Transparency (Experimental)

VR

Stereo Foveation Level (Experimental) Disabled
Dynamic Foveation (Experimental)

Instanced Stereo

Mobile HDR

Mobile Multi-View

Round Robin Occlusion Queries

Postprocessing

Custom Depth-Stencil Pass Enabled
Custom Depth with TemporalAA Jitter

Enable alpha channel support in post processing (experimental). Disabled
Default Settings

Bloom

Ambient Occlusion

Q
Engine - Rendering

Export...

ok’ These settings are saved in DefaultEngine.ini, which is currently writable

Mobile

Mobile Shading Forward Shading v
Allow Deferred Shading on OpenGL
Enable GPUScene on Mobile
Mobile Anti-Aliasing Method Multisample Anti-Aliasing (MSAA) v

Mobile Float Precision Mode Use Half-precision v

Allow Dithered LOD Transition

Support movable light CSM shader culling

Mobile Local Light Setting Local Lights Enabled v
Enable clustered reflections on mobile forward

Mobile Ambient Occlusion

Mobile DBuffer Decals

Planar Reflection Mode

Support desktop Gen4 TAA on mobile

Materials

Game Discards Unused Material Quality Levels

Clear Coat Enable Second Normal

Enable Rough Diffuse Material

Import...

Mobile HDR: Disable this setting. Mobile HDR can significantly affect performance,
especially on lower-end devices.

220/ 365

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

(o}
VR
Stereo Foveation Level (Experimental)
Dynamic Foveation (Experimental)
Instanced Stereo
Mobile HDR
Mobile Multi-View
Round Robin Occlusion Queries
Postprocessing
Custom Depth-Stencil Pass
Custom Depth with TemporalAA Jitter
Enable alpha channel support in post processing (experimental).
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Disabled

Enabled

Disabled

Auto Exposure Histogram

10

Instanced Stereo: Enable this setting. It is a rendering technique used in Unreal
Engine primarily for virtual reality (VR) applications. Its main purpose is to optimize

the rendering process when creating VR experiences by reducing the workload
associated with rendering two slightly different images for each eye.

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Q

VR

Stereo Foveation Level (Experimental)

Dynamic Foveation (Experimental)

Instanced Stereo

Mobile HDR

Mobile Multi-View

Round Robin Occlusion Queries

Postprocessing

Custom Depth-Stencil Pass

Custom Depth with TemporalAA Jitter

Enable alpha channel support in post processing (experimental).
Default Settings

Bloom

Ambient Occlusion

Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure

Auto Exposure

Auto Exposure Bias

Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast

Local Exposure Shadow Contrast

Motion Blur

Lens Flares (Image based)

221/ 365

Disabled

Enabled

Disabled

Auto Exposure Histogram

10

The SenseGlove Unreal Engine Handbook

Mobile Multi-View: Enable this setting. It is a rendering feature in Unreal Engine
designed to optimize the performance of Virtual Reality (VR) applications on mobile
devices, particularly when using VR platforms like Google Daydream or Samsung
Gear VR. It is similar in concept to Instanced Stereo, but specifically optimized for
mobile hardware.

& Project Settings

General Settings

Hierarchical LOD
Input Disabled
Interchange
Interchange gITF
Interchange MaterialX
Landscape
Level Sequence
Mesh Budget
Mesh Stats Custom De cil Pa Enabled
MetaSounds
Navigat z n xperimental). Disabled
Navigation System
Network
Physics
Rendermg) for baked lighting)
Rendering Overrides (Local)
Slate Settings

stogram W
Streaming
Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Mobile Anti-Aliasing Method: Use FXAA (Fast Approximate Anti-Aliasing) Or MSAA
(Multisample Anti-Aliasing) . MSAA is often preferred for mobile as it gives better
visual quality without a huge performance hit.

222 /365

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Reflection Capture Resolution: Reduce this value (e.g., 128 or 256) to decrease the
memory usage.

¥ Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

Q

Engine - Rendering
Export...

uh' These settings are saved in DefaultEngine.ini, which is currently writable

Mobile

Mobile Shading Forward Shading v

Allow Deferred Shading on OpenGL

Enable GPUScene on Mobile

Mobile Anti-Aliasing Method Multisample Anti-Aliasing (MSAA) v
Mobile Float Precision Mode Use Half-precision v

Allow Dithered LOD Transition

Support movable light CSM shader culling

Mobile Local Light Setting Local Lights Enabled v
Enable clustered reflections on mobile forward

Mobile Ambient Occlusion

Mobile DBuffer Decals

Planar Reflection Mode Usual

Support desktop Gen4 TAA on mobile

Materials

Game Discards Unused Material Quality Levels

Clear Coat Enable Second Normal

Enable Rough Diffuse Material

Q
Reflections
Reflection Method
Reflection Capture Resolution
Reduce lightmap mixing on smooth surfaces
Support global clip plane for Planar Reflections

Lumen

High Quality Translucency Reflections
Software Ray Tracing Mode Detail Tracing
Ray Traced Translucent Refractions

Shadows

Shadow Map Method

Hardware Ray Tracing

Support Hardware Ray Tracing

Ray Traced Shadows

Texture LOD

Path Tracing

Software Ray Tracing

Generate Mesh Distance Fields

Distance Field Voxel Density

Nanite

Nanite

223/ 365

Import...

The SenseGlove Unreal Engine Handbook

Texture Settings

Enable virtual texture support: Disable this setting.

& Project Settings

Q

Hierarchical LOD Virtual Textures

Input Enable virtual texture

General Settings

Interchange

Interchange gITF

Interchange MaterialX

Landscape

Level Sequence

Mesh Budget

Mesh Stats

MetaSc Working Color Space
Working Col

Navigation

Network

Physics

Rendering

Rendering Overri

Global Illumination
Slate Settings
Dynal al llluminatios
Streaming
Reflections
Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Texture Streaming: Enable texture streaming to ensure textures load progressively,
which helps in reducing memory usage.

224/ 365

The SenseGlove Unreal Engine Handbook

& Project Settings

Ql

Hierarchical LOD Textures

General Settings

Input
Interchange
Interchange gITF Virtual Textures
Interchange MaterialX Enable virtual texture support
Landscape
Level Sequence
Mesh Budget
Mesh Stats
Meta
Mesh
Navigation System
Network
Physics
Rendering
Rendering Overrides (Local)
Slate Settings
Streaming
Texture Encoding

Global Illumination
User Interface

Dynamic Global lllumination Method
Virtual Texture Pool

Reflecti
World Partition etiections

Editor

Texture Quality: Lower the overall texture quality to Medium or Low depending on
the target device capabilities.

Texture Compression: Use ASTC compression for Android to ensure the textures
are optimized for mobile devices.

Lighting Settings

Use Static Lighting: Prefer static lighting over dynamic lighting for better
performance.

Lightmap Resolution: Use a lower lightmap resolution (e.g., 32 or 64) for mobile to
reduce memory usage.

Dynamic Shadows: Disable or minimize the use of dynamic shadows. If required,
use CSM (Cascaded Shadow Maps) with low resolution and distance.

Distance Field Shadows/Ambient Occlusion: Disable these features as they are
costly on mobile platforms.

225/ 365

The SenseGlove Unreal Engine Handbook

& Project Settings

Q

Default Settings

General Settings

Hierarchical LOD

Input Bloom
Interchange

e or baked lighting)
Interchange MaterialX

Landscape

Level Sequence

Mesh Budget

Mesh Stats

MetaSounds

Navigation Mesh

Navigation St

Network

Physics

Rendering

Rendering Overrid Light Units
Slate Settings A orph target blend weight,
Streaming Advanced
JEREEIEC Default Screen Percentage

User Interface 0

Virtual Texture Pool i
d on

World Partition
Manual

Editor ercenta Manual

Post-Processing Settings

Bloom, Lens Flares, and Auto Exposure: Minimize or disable these effects as they
can be performance-intensive.

226 /365

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

(o}
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Anti-Aliasing Method
MSAA Sample Count

Light Units

Maximum absolute value accepted as a morph target blend weight,

Advanced
Default Screen Percentage
Manual Screen Percentage
Screen Percentage Mode for Desktop renderer
Screen Percentage Mode for Mobile renderer

Screen Percentage Mode for VR

Auto Exposure Histogram v

1.0

Multisample Anti-Aliasing (MSAA) v
4x MSAA v
Candelas

50

1000
Based on display resolution v
Manual v

Manual

Screen Space Reflections: Disable this setting as it is costly in terms of performance

on mobile devices.

Motion Blur: Disable this feature to save on processing power.

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Q
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Anti-Aliasing Method
MSAA Sample Count

Light Units

Maximum absolute value accepted as a morph target blend weight,

Advanced
Default Screen Percentage
Manual Screen Percentage
Screen Percentage Mode for Desktop renderer
Screen Percentage Mode for Mobile renderer

Screen Percentage Mode for VR

227 /365

Auto Exposure Histogram

1.0

Multisample Anti-Aliasing (MSAA) v
4x MSAA v
Candelas

50

100,0
Based on display resolution v
Manual v

Manual

The SenseGlove Unreal Engine Handbook

Materials and Shaders

Material Complexity: Use simple materials with few instructions and limit the
number of textures and shader nodes.

Specular Highlights: Consider reducing or disabling specular highlights on materials
to save on performance.

LOD (Level of Detail) Models: Ensure that LODs are set up correctly for all models,
with appropriate reduction in polygon count for distant objects.

Level of Detail (LOD) Settings
Mesh LODs: Configure LODs for all meshes to reduce polygon count at distances.

Screen Size: Adjust screen size settings for LODs to ensure they switch at
appropriate distances for mobile screens.

Engine Scalability Settings

Resolution Scale: Lower the resolution scale (e.g., 70% or 80%) to improve
performance while maintaining visual quality.

View Distance: Set to Medium or Low to reduce the amount of detail rendered at
long distances.

Shadows: Set to Low or Off for better performance.
Textures: Set to Medium or Low depending on the device’s capabilities.

Effects: Set to Low to reduce the complexity of visual effects.

Note

See Game User Settings and Engine Scalability Settings for more details.

228 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/index.html#game-user-settings-and-engine-scalability-settings

The SenseGlove Unreal Engine Handbook

Physics and Collision

Physics Simulation: Limit the use of physics simulation where possible, as it can be
expensive on mobile devices.

Collision Complexity: Use simple collision meshes instead of complex ones to
improve performance.

Audio Settings

Sample Rate: Lower the sample rate to reduce memory usage and processing load.

Number of Audio Channels: Limit the number of audio channels used in the project
to reduce CPU usage.

Rendering API

Vulkan vs OpenGL ES: Test your project with both Vulkan and OpenGL ES to see
which provides better performance on your target devices. Vulkan often offers
better performance but may not be supported on all devices.

Culling

Frustum Culling: Ensure that frustum culling is enabled to avoid rendering objects
outside of the camera’s view.

Occlusion Culling: Enable occlusion culling to avoid rendering objects that are not
visible due to being blocked by other objects.

229/ 365

& Project Settings

General Settings

Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation St
Network

Physics
Rendering
Rendering Overrid:
Slate Settings
Streaming
Texture Encoding
User Interface
Virtual Texture Pool
World Partition

Editor

Q

Culling

Warn about no precomput
Textures

ure Streaming

XTS Normal h

Virtual Textures

The SenseGlove Unreal Engine Handbook

-aded Shadow

bility

Enable virtual support

Working Color Space

Working

230/ 365

The SenseGlove Unreal Engine Handbook

Safe and Reliable Glove Access in
Blueprint

Since the Blueprint APl uses the underlying C++ API to access the SenseGlove
hardware, it often has to deal with C++ pointers. Those who are familiar with C++ and
in particular with the Unreal Engine UObject Garbage Collection System are aware
that:

e As a general rule of thumb, a pointer should be validated before dereferenced,
meaning before accessing the pointer a NuLL check should be performed,
otherwise if the pointer is NULL the program is going to crash upon access.

e Unreal implements a garbage collection scheme whereby UObjects that are no
longer referenced or have been explicitly flagged for destruction will be cleaned
up at regular intervals. The engine builds a reference graph to determine which
UObjects are still in use and which ones are orphaned. The ones that are
orphaned will be evaluated to NuLL on the next GC cycle and their allocated
memory will be released. Hence, nuLL checks on UObjects are always
mandatory.

Glove objects inside the SenseGlove Unreal Engine Plugin, utilize the UObject system,
and since communication for Nova gloves happens over SenseCom and the
Bluetooth protocol, and also the gloves are running on battery, there's always the
possibility for a glove variable to become nuLL and therefore invalidated when the

glove hardware for any reason is not accessible.

The recommended way to work with a glove instance without any performance
penalty, and in a safe manner in Blueprint is:

1. Cache the glove instance inside a global variable if it passes certain tests so that
you don't have to perform all those checks on every access. This usually could
happen inside the Tick function.

2. The first check inside the Tick function is to check whether the cached glove
instance is valid. If it's valid we continue to the next step, if not, we ask the API
for a new glove instance.

231/365

The SenseGlove Unreal Engine Handbook

3. If the glove instance is valid, then it's best to perform a connectivity check next.
If the glove is connected we don't have to do anything else in regards to
obtaining a new glove instance and caching it. If however the glove is not
connected, we might ask the APl for a new glove instance.

4. If any of the above steps fail, then we can actually ask the API for a new glove
instance, and if the result is successful we're going to cache the new glove
instance.

5. From here on, anywhere else inside your code, whenever you need to access
the glove data or perform an operation like for example sending or stopping
haptics you always perform a validity check and only proceed when the glove
instance is valid. This way you will always ensure you are accessing the glove
instances in a safe and reliable manner, thus avoiding any unexpected
behaviors or crashes.

The following Blueprint examples implement the above approach and also
demonstrate good and bad glove instance accesses:

M My Blueprint x %2 Event Graph

Ry € x >

Safest way to get the glove, you can make this a function, but since Bluetooth is not a reliable tech we recommend you check the glove validity every frame

FUNCTIONS
MACROS
VARIABLES
Lef

EVENT DISPATCHERS
Good and safe code

Bad and unsafe code

232 /365

The SenseGlove Unreal Engine Handbook

OpenXR

The SenseGlove Unreal Engine Plugin has provided OpenXR-compatible hand
tracking by implementing XR_EXT_hand_tracking since v2.1.0.

Typically a user does not need to know anything about OpenXR to use the plugin, so
this section of the handbook is for advanced users who are looking for a way to
directly consume the OpenXR data coming directly from either a SenseGlove device
or if enabled in the plugin settings from hand-tracking.

Since the SenseGlove Unreal Engine Plugin registers itself as an oOpenXRHandTracking
motion controller device it becomes a hand-tracking provider for Unreal Engine, thus
the OpenXR data from SenseGlove could always be retrieved from the Unreal
Engine's IXTrackingSystem with one caveat. The caveat is if another OpenXR-
compatible hand-tracking plugin, e.g. Epic's own OpenXRHandTracking, is enabled
simultaneously it's not guaranteed that the FXRMotionControllerData and
FXRHandTrackingState structs retrieved from the

IXTrackingSystem: :GetMotionControllerData() and

IXTrackingSystem: :GetHandTrackingState() methods are coming from SenseGlove,
as these methods return the first hand-tracking plugin they could find. Thus,
SenseGlove provides its own implementation of GetMotionControllerData() and
GetHandTrackingState() which guarantee the retrieved FXRMotionControllerData Or
FXRHandTrackingState are coming from the SenseGlove Unreal Engine Plugin; and
this is the preferred way to that.

Note

In order to retrieve the latest FXRMotionControllerState available, The
SenseGlove Unreal Engine Plugin provides an alternative implementation for
IXTrackingSystem: :GetMotionControllerState() as well.However, since this
method does not rely on the OpenXRHandTracking provider, it may become
redundant. As a result, we might consider removing this functionality in future
updates in favor of the one that Unreal Engine provides.

Important

233/365

The SenseGlove Unreal Engine Handbook

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

In the next sections we'll see:

e How we can directly consume the FXRMotionControllerData on UE 5.2, 5.3,

5.4,and 5.5 to draw and animate debug virtual hands in both Blueprint and
C++.

e How we can directly consume the FXRHandTrackingState on UE 5.5 to draw
and animate debug virtual hands in both Blueprint and C++.

234/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState

Important

Unreal Engine versions 5.2, 5.3,and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState Sstructs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand-
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FXRHandTrackingState declaration inside the Unreal
Engine's HeadMountedDisplay module at
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]
(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He
adMountedDisplay/Public/HeadMountedDisplayTypes.h) , figuring out the data
structure might not seem very straightforward:

235/ 365

The SenseGlove Unreal Engine Handbook

USTRUCT (BlueprintType)
struct FXRHandTrackingState

{
GENERATED_USTRUCT_BODY () ;

// The state 1is valid if poses have ever been provided.

UPROPERTY (BlueprintReadOnly, Category =
bool bVvalid = false;

UPROPERTY (BlueprintReadOnly, Category
FName DeviceName;

UPROPERTY (BlueprintReadOnly, Category
FGuid ApplicationInstancelD;

UPROPERTY (BlueprintReadOnly, Category
EXRSpaceType XRSpaceType = EXRSpaceType:

UPROPERTY (BlueprintReadOnly, Category =
EControllerHand Hand = EControllerHand::

UPROPERTY (BlueprintReadOnly, Category =

IIXRII)
IIXRII)
IIXRII)
IIXRII)
:UnrealWorldSpace;

IIXRII)
Left;

IIXR")

ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).
UPROPERTY (BlueprintReadOnly, Category =
TArray<FVector> HandKeyLocations;

IIXRII)

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).
UPROPERTY (BlueprintReadOnly, Category =
TArray<FQuat> HandKeyRotations;

IIXRII)

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<float> HandKeyRad1ii;
s

Which on the Blueprint side it looks like this:

236 /365

The SenseGlove Unreal Engine Handbook

—————————————————t.

Hand Valid

Hand Device Name O»
Hand Application Instance ID
Hand XRSpace Type

Hand Hand

Hand Tracking Status

Hand Hand Key Locations :.:
Hand Hand Key Rotations

Hand Hand Key Radii

But, fear not, we've got you covered!

FXRHandTrackingState in Unreal Engine

FXRHandTrackingState is a structure in Unreal Engine designed to hold detailed
information about the state of a hand-tracking device at a given moment. This
structure is essential for handling hand-tracking inputs in virtual reality (VR)
applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

237 /365

The SenseGlove Unreal Engine Handbook

Structure Members of FXRHandTrackingState
e bValid

o Description: A boolean flag indicating whether the data is valid or not.
o Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

DeviceName

o Type: FName

o Description: The name of the device.

o Usage: Identifies which device the data is coming from, useful when
multiple devices are in use.

ApplicationinstancelD

o Type: FString

o Description: A unique identifier for the application instance.

o Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

XRSpaceType

o Type: EXRSpaceType

o Description: Enum specifying the type of XR space being used (e.g., unreal
world or tracking space).
o Usage: Specifies the coordinate system the XR Device is tracking itself in.

Hand

o Type: EControllerHand

o Description: Enum indicating which hand is being tracked (left or right).

o Usage: Helps identify whether the hand-tracking data pertains to the left
or right hand, essential for hand-specific actions or interactions.

TrackingStatus

o Type: EXRTrackingStatus

238/365

The SenseGlove Unreal Engine Handbook
o Description: Enum indicating the tracking status of the hand-tracking
device.
o Usage: Shows whether the hand-tracking device is being tracked
accurately, with possible statuses like Tracked, NotTracked, etc.

e HandKeyLocations

o Type: TArray<FVector>

o Description: An array of vectors representing key locations of the hand.

o Usage: Provides detailed locations of key points on the hand, useful for
precise hand-tracking and interaction.

e HandKeyRotations

o Type: TArray<FQuat>

o Description: An array of quaternions representing key rotations of the
hand.

o Usage: Complements the hand key locations with rotational data,
ensuring accurate representation of hand movements.

e HandKeyRadii

o Type: TArray<float>
o Description: An array of floats representing the radii of key points of the
hand.

o Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

Organization of FXRHandTrackingState

The structure is organized to encapsulate all relevant data needed for hand-tracking
in a coherent and accessible manner. Boolean flag bvalid provides quick checks on
the state of the controller data. Identifiers DeviceName and ApplicationInstanceID
ensure the correct association of data. Arrays HandKeylLocations, HandKeyRotations,
and HandKeyRadii allow detailed hand-tracking, which is critical for immersive VR
experiences. Lastly, the tracking status TrackingStatus informs the system of the

239/ 365

The SenseGlove Unreal Engine Handbook

reliability of the data being processed and whether the hands are actively being
tracked or they are inactive at the moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeylLocations and HandKeyRotations fields of the FXRHandTrackingState struct.

Both HandKeyLocations and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT, etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT aS EHandKeypointCount inside
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]
(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He
adMountedDisplay/Public/HeadMountedDisplayTypes.h) as follows:

240/ 365

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html

The SenseGlove Unreal Engine Handbook

[**
* Transforms that are tracked on the hand.
* Matches the enums from WMR to make it a direct mapping
*/
UENUM (BlueprintType)
enum class EHandKeypoint : uint8
{
Palm,
Wrist,
ThumbMetacarpal,
ThumbProximal,
ThumbDistal,
ThumbT-ip,
IndexMetacarpal,
IndexProximal,
IndexIntermediate,
IndexDistal,
IndexT1ip,
MiddleMetacarpal,
MiddleProximal,
MiddleIntermediate,
MiddleDistal,
MiddleT1ip,
RingMetacarpal,
RingProximal,
RingIntermediate,
RingDistal,
RingT1ip,
LittleMetacarpal,
LittleProximal,
LittleIntermediate,
LittleDistal,
LittleTip

s

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

So, getting the any joint's location or rotation is as easy as casting the enum value
and passing it as the array index.

241/ 365

The SenseGlove Unreal Engine Handbook

FXRHandTrackingState HandTrackingState;
const bool bGotHandTrackingState = FSGXRTracker::GetHandTrackingState(
GetWorld(), EXRSpaceType::UnrealWorldSpace, EControllerHand::Left,
HandTrackingState);

// Return 1if the struct data is -dinvalid!

if (!bGotHandTrackingState || !HandTrackingState.bValid)
{

return;
}

// Return if the device is not being tracked!
if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that HandTrackingState.HandKeylLocations has the location data
// for 26 joints!
if (!ensureAlwaysMsgf(HandTrackingState.HandKeylLocations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyLocations count!'")))

return;

// Ensure that HandTrackingState.HandKeyRotations has the rotation data
// for 26 joints!
if (!ensureAlwaysMsgf (HandTrackingState.HandKeyRotations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyRotations count!")))

return;

}

static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint: :Palm) ;

const FVector& PalmLocation{
HandTrackingState.HandKeyLocations[PalmIndex]

}s

const FRotator& PalmRotation{
HandTrackingState.HandKeyRotations[PalmIndex].Rotator ()

b5

242/ 365

The SenseGlove Unreal Engine Handbook

The equivalent Blueprint code for the above looks something like this:

 Get Hand Tracking State T Branch £ Switch on ETracki

ANL

‘Addpin @

LENGTH

" Addpin ®

LENGTH

Hand Key Rotatior

Hand Key Radii i

B Literal enum EHandKeypoint

Enum Return Value

Paim v

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++in the upcoming sections.

243/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState in
Blueprint

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRHandTrackingState section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

244 | 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

The SenseGlove Unreal Engine Handbook
, File Edit Window Tools Help
(A1)
VRTemplateMap ¥ Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support

Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4.You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the
code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand.

245/ 365

The SenseGlove Unreal Engine Handbook

File Edit View Debug Window Tc Help
VRPawn* x

No debug obj v

mpile | a t =g Diff v @Fmd *% Hide Unrelated

F Draw Hand x # Details
(e}

Off Pins to Create/Connect New Nodes.

Default

Compact Node Title
P
Call In Edite

cifier

EContoller Ha v
[Draw Hand . et
> by-Reference

M \y Blueprint
Outputs

+Add Q
Please press the +icon p——

GRAPHS

F ToggleMenu
F DrawHand
MACROS

5 Content Drawer [Outputlog EJCmd v & 1 Unsaved ¥ Re

6. Inside this function's event graph add a Get Hand Tracking State node from

SenseGlove > Tracking > XR Tracker > Get Hand Tracking State.

246/ 365

The SenseGlove Unreal Engine Handbook

[DrawHand All Actions for this Blueprint Context Sensitive

D] X get hand tracking state]

Input
XRTracking

WillGet Hand Tracking State

Sense Glove
Components
Virtual Hand Component

BallGet Hand Tracking State

Wrist Tracker Component

BalG et Hand Tracking State

Tracking
XR Tracker

57 Get Hand Tracking State

Hand

Get Hand Tracking State

Target is SGXRTracker Kismet Library

7. Then connect the functions Hand input parameter to the Get Hand Tracking
State's Hand input and right-click on the outHandTrackingState parameter and
use the Break XRHandTrackingState node to break the struct to it's fields.

247/ 365

The SenseGlove Unreal Engine Handbook

f Get Hand Tracking State

» b
XRSpace Type Out Hand Tracking State

Unreal World Space
Return Value

Hand

. Break XRHand Tracking State

XRHand Tracking State Valid
Device Name O»

Application Instance ID

XRSpace Type

Hand

Tracking Status
Hand Key Locations i3

Hand Key Rotations

Hand Key Radii

8. After this, we need to perform data validation by checking the return status of
the Get Hand Tracking State function and FXRHandTrackingState's Valid field.

Then, we check if the hand-tracking device is being tracked and indeed coming
from a hand-tracking source. And, finally, we check whether we have the
positions and rotations for exactly 26 joints or not.

If we got the hand tracking state and it's valid If the device is being tracked

Fon ETrackingStatss
Not Tracked [
Inertial Only B

Tracked B

Ensure that we have the data for exactly 26 joints

/ - = ¥

LENGTH e

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FxRHandTrackingState to the

248/ 365

The SenseGlove Unreal Engine Handbook

DebugVirtualHand: :Draw function! But, since the point of this tutorial is to learn
how to consume the FXRHandTrackingState we ignore the last option. Between
the debug cubes or gizmos, we are going to choose the gizmos since they
better represent the rotations than the cubes.

All Actions for this Blueprint Context Sensitive
Q

Sense Glove
Backend
Components
Connect
Core
Debug

Cube
Gizmo
Virtual Hand

f Draw
f Draw

Game Framework Draw FXRHand Tracking State

Settings Target is SGDebug Virtual Hand Kismet Library
Tracking

Sequence Evaluator
Sequencer

Services

Settings

10. In the last step inside the praw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions Or Hand Key Rotations arrays from the FXRHandTrackingState struct.

249/ 365

The SenseGlove Unreal Engine Handbook

Since we made sure both arrays have 26 elements before we reached this
step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop Or @ For Loop tO access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the praw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two praw functions
and the only difference between the two is that one accepts an FQuat and the
other a FRotator forits Rotation input parameter. In this case, we use the
FQuat variant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2, as the default
value might be too thick for drawing a joint gizmo.

If we got the hand tracking state and it's valid If the device is being tracked

Ensure that we have the data for exactly 26 joints

LENGTH e
(LENGTH e

=

11. Well, now the full implementation for the braw Hand function insde the vRPawn
should look something like this:

250/ 365

The SenseGlove Unreal Engine Handbook

F DrawHand

If we got the hand tracking state and it's valid If the device is being tracked

Eoawrnd Gl Trackng St [— e TS SR TS
= » > » e —— » Mot Trsckea >

s Kepsce Type Out ona Trsckin State Constion Condition False > Seection

Hand

AR g S
ks kee Ensure that we have the data for exactly 26 joints

LENGTH e

oo 05

AN
Addpin ©

Draw a debug giZfo per each joint

Ty o™ ™ npn g S SN M

Compitea >

12. Finally, go back to vrRpPawn's event graph and the following code to the Tick
event. Basically what we do here is call our newly implemented Draw Hand
twice, once for each hand.

7 File Edit Asset V Debug Window Tools Help
(L)
VRTemplateMap VRPawn+ x

B W igcomwie ! =gDiffv fDFind *BHideUnrelated : {f Class Settings & Class Defaults B Simulation | 3 H No debug object selected v
omponents x Vie
[H Comy = Vi

+ Add Q

F Construction Scr f Teleport Trace 23 EventGraph X F Draw Hand
N~ | & by >
£ VRPawn (Self)
ke, VROrigin
b, MotionControllerLeftGrip Attempt to draw the left and right virtual hands every frame
% XRDeviceVisualizationLeft
2, HandLeft AN
Be Camera LA

& Draw Hand & Draw Hand

% HeadMountedDisplayMesh » —
ke, MotionControllerRightAim Delta Seconds
A+, WidgetinteractionRight
&, MotionControllerL
A, WidgetinteractionLeft
ki, TeleportTraceNiagarasyst
A, MotionContrallerRightGrip
2, HandRight
&2 XRDeviceVisualizationRight
VRNotifications 4 : X
H The vr.PixelDensity cvar will
S for your Head Mounted Displ
My Blueprint
+add Q

. . . More info: https://www.unred
:-R-A:Hs - Begin Play - Set Tracking Origin to floor changes-coming-to-vr-resol
*: EventGraph

FUNCTIONS

& Event BeginPlay T EBranch f Set Tracking Origin
7 ConstructionScript L

2 —_— Tue B —
F StartTeleportTrace » » » »

F TeleportTrace Condiion False [Origin
5 S Stage
F 1svalidTeleportLocation F T+ Fiead Mounted Display Enabled
F EndTeleportTrace
Return Value
F TryTeleport
F GetGrabComponentNearMotionController
F SnapTurn
F ToggleMenu
F DrawHand

251/ 365

The SenseGlove Unreal Engine Handbook

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands
inside your VR simulation.

252 /365

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState in
C++

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRHandTrackingState section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

253 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(AL)

VRTemplateMap % Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support
Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4, From the Tools menu choose New C++ class....

File Edit w Tools Build

L VRTemplateMap Q, t14 Editor Prefer

” ",,_-‘J Platforms
& New C++Class

) Find in Blueprints
=, C++ Header Preview

Cache Statistics

= CSVtosSVG
Localization Dashboard
A Merge Actors

Spectator

. Project Launcher

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

254/ 365

The SenseGlove Unreal Engine Handbook

Add C++ Class

NAME YOUR NEW PAWN

Enter a name for your new class. Class names may only contain alphanumeric characters, and may not contain a space.
When you click the "Create” button below, a header (.h) file and a source (.cpp) file will be made using this name.

Class Type Public Private

Name DebugPawn VirtualHandCpp (Runtime) v
Path C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/ i
Header File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h

Source File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp

Create Class Cancel

6. Name the new pawn class DebugPawn .

Add C++ Class

CHOOSE PARENT CLASS

Common Classes All Classes

This will add a C++ header and source code file to your game project.

C++ class with a default constructor and destructor.

Character
A character is a type of Pawn that includes the ability to walk around.

Pawn
A Pawn is an actor that can be 'possessed’ and receive input from a controller.

Actor
An Actor is an object that can be placed or spawned in the world.

Selected Class pawn (@
Selected Class Source Pawn.h
Cancel

255/ 365

The SenseGlove Unreal Engine Handbook

7.Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from
the File menu choose the Reparent Blueprint class.

File | Edit =t View Debug Window Tools Help

Ll b

" Hide Unrelated
. Open Asset... CTRL+P | =

% Recent Blueprint Assets > Viewport

Save All CTRL+SHIFT+S
Choose Files to Save .. CTRL+ALT+SHIFT+5
Save CTRL+S

, Save As_. CTRL+ALT+5

Compile

Refresh All nodes

Reparent Blueprint

Merge

Developer 3

VP IUYETIET civ LT iy

Tl Change the parent of this Blueprint

9.In the new Reparent blueprint window choose DebugPawn as the new parent.

256/ 365

The SenseGlove Unreal Engine Handbook

Reparent blueprint
> DebugPa
f WDebugPalll

Debug Pawn

1 item

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the AbebugPawn class has been set as the new
parent.

257 /365

The SenseGlove Unreal Engine Handbook

Default

Projected Tel.

Valid Telepor.

Teleport Trac
EEELTTER W0

Snap Turn De. -45,0

Teleport Trac. 0 Array elerr @ ﬁ

Tele port Pr :::j_ 0,0 0,0 0,0

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice, OpenXRHMD, SenseGloveBuildHacks, SenseGloveDebug,
SenseGloveSettings, and SenseGloveTracking modules as either a private or
public dependency.

258/ 365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules

{
public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)

{
PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

PublicDependencyModuleNames.AddRange (new string[] { "Core",
"CoreUObject", "Engine'", "InputCore" });

PrivateDependencyModuleNames.AddRange (new string[]

{
"InputDevice",
"OpenXRHMD",
"SenseGloveBuildHacks",
"SenseGloveDebug",
"SenseGloveSettings",
"SenseGloveTracking"

s

// Uncomment if you are using Slate UI
// PrivateDependencyModuleNames.AddRange (new string[] { "Slate",
"SlateCore" 1});

// Uncomment if you are using online features
// PrivateDependencyModuleNames.Add("OnlineSubsystem");

// To 1include OnlineSubsystemSteam, add it to the plugins section 1in
your uproject file with the Enabled attribute set to true
}
}

12. Locate the C++ header and source file for the AbebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

259 /365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"
#include "DebugPawn.generated.h"

UCLASS ()
class VIRTUALHANDCPP_API ADebugPawn : public APawn

{
GENERATED_BODY ()

private:
// The virtual hand drawing settings.
UPROPERTY (EditDefaultsOnly, Category='"DebugPawn",
meta=(AllowPrivateAccess="false"))
FSGDebugGizmoSettings HandDrawingSettings;

public:
// Sets default values for this pawn's properties
ADebugPawn () ;

protected:
// Called when the game starts or when spawned
virtual void BeginPlay() override;

public:
// Called every frame
virtual void Tick(float DeltaTime) override;

// Called to bind functionality to -input
virtual void SetupPlayerInputComponent(class UInputComponentx
PlayerInputComponent) override;

private:
// The method responsible for drawing a virtual hand.
void DrawHand (EControllerHand Hand) const;
+s
14. Modify the DebugPawn.cpp implementation file to look like this:

260 /365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#include '"DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn: : ADebugPawn ()
{
// Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
PrimaryActorTick.bCanEverTick = true;

// Set the default virtual hand drawing settings.
HandDrawingSettings = FSGDebugGizmoSettings{
1.0f,
FColor{255, 0, 0, 255},
FColor{®, 255, 0, 255},
FColor{®, ®, 255, 255},
false,
1.1f,
0,
0.2f,
b5

// Called when the game starts or when spawned
void ADebugPawn: :BeginPlay ()
{
Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)

{
Super::Tick(DeltaTime);
// Attempt at drawing the left/right virtual hands every frame.
DrawHand (EControllerHand::Left);
DrawHand (EControllerHand: :Right) ;
}

// Called to bind functionality to input
void ADebugPawn: :SetupPlayerInputComponent (UInputComponentx*

261 /365

The SenseGlove Unreal Engine Handbook

PlayerInputComponent)

{
}

Super: :SetupPlayerInputComponent (PlayerInputComponent) ;

void ADebugPawn: :DrawHand(const EControllerHand Hand) const

{

// Get the world and cache it, if it's null we return early.
UWorld* World{GetWorld()};

if (!IsvValid(World))

{

return;

FXRHandTrackingState HandTrackingState;
const bool bGotHandTrackingState = FSGXRTracker: :GetHandTrackingState(
World, EXRSpaceType::UnrealWorldSpace, Hand, HandTrackingState);

// Return if the struct data is -dinvalid!

if (!bGotHandTrackingState || !HandTrackingState.bValid)
{

return;
}

// Return if the device is not being tracked!
if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that HandTrackingState.HandKeylLocations has the location data
// for 26 joints!
if (!ensureAlwaysMsgf(HandTrackingState.HandKeylLocations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyLocations count!'")))

return;
// Ensure that HandTrackingState.HandKeyRotations has the rotation data
// for 26 joints!
if (!ensureAlwaysMsgf (HandTrackingState.HandKeyRotations.Num()
== EHandKeypointCount,

TEXT ("Invalid HandKeyRotations count!")))

return;

262 /365

The SenseGlove Unreal Engine Handbook

// Iterate over the hand joint locations and rotations!
for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)
{
const FVector& JointLocation{
HandTrackingState.HandKeyLocations[JointIndex]
}s
const FQuat& JointRotation{
HandTrackingState.HandKeyRotations[JointIndex]

s

// Draw a single joint's gizmo!
// Please note that we could alternatively:
// Use FSGDebugCube::Draw() to draw a cube.
// Or use the FSGDebugVirtualHand: :Draw() method and pass the
// HandTrackingState directly to draw the virtual hand
// all at once without iterating the joints. But, that's not
// goal of this tutorial.
FSGDebugGizmo: :Draw(World, JointLocation, JointRotation,
HandDrawingSettings);
}
}

15. Now, rebuild the source code and go back to the VRTemplateMap, then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

263 /365

The SenseGlove Unreal Engine Handbook

264 / 365

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData

Important

Unreal Engine versions 5.2, 5.3,and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState Sstructs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FXRMotionControllerData declaration inside the Unreal
Engine's HeadMountedDisplay module at
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]
(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He
adMountedDisplay/Public/HeadMountedDisplayTypes.h) , figuring out the data
structure might not seem very straightforward:

265/ 365

The SenseGlove Unreal Engine Handbook

USTRUCT (BlueprintType)
struct FXRMotionControllerData

{
GENERATED_USTRUCT_BODY () ;

UPROPERTY (BlueprintReadOnly, Category = "XR")

bool bVvalid = false;

UPROPERTY (BlueprintReadOnly, Category = "XR")

FName DeviceName;

UPROPERTY (BlueprintReadOnly, Category = "XR")

FGuid ApplicationInstancelD;

UPROPERTY (BlueprintReadOnly, Category = "XR")

EXRVisualType DeviceVisualType = EXRVisualType::Controller;

UPROPERTY (BlueprintReadOnly, Category = "XR")
EControllerHand HandIndex = EControllerHand::Left;

UPROPERTY (BlueprintReadOnly, Category = "XR")
ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

// Vector representing an object being held in the player's hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector GripPosition = FVector(0.0f);

// Quaternion representing an object being held in the player's hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat GripRotation = FQuat(EForceInit::ForcelInitToZero);

// For handheld controllers, gives a vector for pointing at objects
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector AimPosition = FVector(0.0f);

// For handheld controllers, gives a quaternion for pointing at objects
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat AimRotation = FQuat(EForceInit::ForceInitToZero);

// For handheld controllers, gives a vector for representing the hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector PalmPosition = FVector(0.0f);

// For handheld controllers, gives a quaternion for representing the hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat PalmRotation = FQuat(EForceInit::ForcelInitToZero);

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<FVector> HandKeyPositions;

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

266/ 365

The SenseGlove Unreal Engine Handbook

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<FQuat> HandKeyRotations;

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<float> HandKeyRadii;

UPROPERTY (BlueprintReadOnly, Category = "XR")
bool bIsGrasped = false;

s

Which on the Blueprint side it looks like this:

_—

Motion Controller Data Valid
Motion Controller Data Device Name O
Motion Cantroller Data Application Instance ID
Motion Controller Data Device Visual Type
Motion Controller Data Hand Index
Motion Controller Data Tracking Status
Motion Controller Data Grip Position O
Motion Controller Data Grip Rotation
Motion Controller Data Aim Position O
Motion Controller Data Aim Rotation
Motion Controller Data Palm Position O
Motion Controller Data Palm Rotation

Maotion Controller Data Hand Key Positions 222

Motion Controller Data Hand Key Rotations

Motion Controller Data Hand Key Radii

Motion Controller Data Is Grasped

But, fear not, we've got you covered!

267 /365

The SenseGlove Unreal Engine Handbook

FXRMotionControllerData in Unreal Engine

FXRMotionControllerData iS a structure in Unreal Engine designed to hold detailed
information about the state of a motion controller device at a given moment. This
structure is essential for handling motion controller inputs in virtual reality (VR)

applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

Structure Members of FXRMotionControllerData

e bVvalid

o Description: A boolean flag indicating whether the data is valid or not.
o Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

e DeviceName

o Type: FName
o Description: The name of the device.

o Usage: Identifies which motion controller device the data is coming from,
useful when multiple devices are in use.

e ApplicationinstancelD

o Type: FString

o Description: A unique identifier for the application instance.

o Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

e DeviceVisualType

o Type: EXRVisualType

o Description: Enum specifying the visual type of the device (e.g., controller,
hand).

o Usage: Used to differentiate between various motion controller devices or
hand-tracking representations for rendering and interaction purposes.

268 /365

The SenseGlove Unreal Engine Handbook

Handindex

o Type: EControllerHand

o Description: Enum indicating which hand is being tracked (left or right).

o Usage: Helps identify whether the motion data pertains to the left or right
hand, essential for hand-specific actions or interactions.

TrackingStatus

o Type: EXRTrackingStatus

o Description: Enum indicating the tracking status of the motion controller.

o Usage: Shows whether the controller is being tracked accurately, with
possible statuses like Tracked, NotTracked, etc.

GripPosition

o Type: Fvector

o Description: The position of the grip in world coordinates.

o Usage: Provides the 3D coordinates of the controller's grip, essential for
positioning the virtual representation of the controller.

GripRotation

o Type: FQuat

o Description: The rotation of the grip in world coordinates.

o Usage: Provides the orientation of the controller's grip, allowing for
accurate rotation and alignment in the virtual space.

AimPosition

o Type: FVector

o Description: The position of the aim point in world coordinates.

o Usage: Specifies where the controller is aiming, useful for aiming or
pointing actions.

AimRotation
o Type: FQuat

o Description: The rotation of the aim point in world coordinates.

269 /365

The SenseGlove Unreal Engine Handbook

o Usage: Determines the orientation of the aim direction, important for
actions like shooting or selecting objects in VR.

PalmPosition

o Type: FVector
o Description: The position of the palm in world coordinates.

o Usage: Provides the 3D location of the palm, important for determining
hand gestures or interactions in VR.

PalmRotation

o Type: FQuat

o Description: The rotation of the palm in world coordinates.

o Usage: Defines the orientation of the palm, crucial for hand-based
interaction accuracy and realism in VR experiences.

HandKeyPositions

o Type: TArray<FVector>
o Description: An array of vectors representing key positions of the hand.

o Usage: Provides detailed positions of key points on the hand, useful for
precise hand tracking and interaction.

HandKeyRotations

o Type: TArray<FQuat>

o Description: An array of quaternions representing key rotations of the
hand.

o Usage: Complements the hand key positions with rotational data,
ensuring accurate representation of hand movements.

e HandKeyRadii

o Type: TArray<float>

o Description: An array of floats representing the radii of key points of the
hand.

o Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

270/ 365

The SenseGlove Unreal Engine Handbook

e bisGrasped

o Type: bool

o Description: A boolean indicating whether the controller is currently
grasping an object.

o Usage: Determines if the user is holding something, affecting interactions
and animations.

Organization of FXRMotionControllerData

The structure is organized to encapsulate all relevant data needed for hand and
motion controller tracking in a coherent and accessible manner. Boolean flags
bvalid and bIsGrasped provide quick checks on the state of the controller data.
|dentifiers DeviceName and ApplicationInstanceID ensure the correct association of
data. Positional and rotational data GripPosition, GripRotation, AimPosition, and
AimRotation offer precise tracking of the controller's movement. Arrays
HandKeyPositions, HandKeyRotations, and HandKeyRadii allow detailed hand
tracking, which is critical for immersive VR experiences. Lastly, the tracking status
TrackingStatus informs the system of the reliability of the data being processed and
whether the motion controller is actively being tracked or it's inactive at the
moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeyPositions and HandKeyRotations fields of the FXRMotionControllerData
struct.

Both HandKeyPositions and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT, etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT as EHandKeypointCount inside
[Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h]

271 /365

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html

The SenseGlove Unreal Engine Handbook

(https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/He
adMountedDisplay/Public/HeadMountedDisplayTypes.h) as follows:

[**
* Transforms that are tracked on the hand.
* Matches the enums from WMR to make it a direct mapping
*/
UENUM (BlueprintType)
enum class EHandKeypoint : uint8
{
Palm,
Wrist,
ThumbMetacarpal,
ThumbProximal,
ThumbDistal,
ThumbT-ip,
IndexMetacarpal,
IndexProximal,
IndexIntermediate,
IndexDistal,
IndexT1ip,
MiddleMetacarpal,
MiddleProximal,
MiddleIntermediate,
MiddleDistal,
MiddleT1ip,
RingMetacarpal,
RingProximal,
RingIntermediate,
RingDistal,
RingT1ip,
LittleMetacarpal,
LittleProximal,
LittleIntermediate,
LittleDistal,
LittleTip

s

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

So, getting the any joint's position or rotation is as easy as casting the enum value
and passing it as the array index.

272 /365

The SenseGlove Unreal Engine Handbook

FXRMotionControllerData MotionControllerData;
const bool bGotMotionControllerData =
FSGXRTracker: :GetMotionControllerData(
GetWorld(), EControllerHand::Left, MotionControllerData);

// Return 1if the struct data is -dinvalid!

if (!bGotMotionControllerData || !MotionControllerData.bValid)
{

return;
}

// Return if the device is not being tracked!
if (MotionControllerData.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that MotionControllerData.DeviceVisualType is a hand!
if (!ensureAlwaysMsgf(MotionControllerData.DeviceVisualType

== EXRVisualType: :Hand,

TEXT("Invalid DeviceVisualType type!")))

// Ensure that MotionControllerData.HandKeyPositions has the position
data
// for 26 joints!
if (!ensureAlwaysMsgf(MotionControllerData.HandKeyPositions.Num()
== EHandKeypointCount,
TEXT ("Invalid HandKeyPositions count!")))

return;

// Ensure that MotionControllerData.HandKeyRotations has the rotation
data
// for 26 joints!
if (!ensureAlwaysMsgf (MotionControllerData.HandKeyRotations.Num()
== EHandKeypointCount,
TEXT ("Invalid HandKeyRotations count!")))

return;

}

static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint: :Palm);

273 /365

The SenseGlove Unreal Engine Handbook

const FVector& PalmPosition{
MotionControllerData.HandKeyPositions[PalmIndex]

b3

const FRotator& PalmRotation{
MotionControllerData.HandKeyRotations[PalmIndex].Rotator ()

}s

The equivalent Blueprint code for the above looks something like this:

£’ Switch on EXRVisualType

LENGTH

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++in the upcoming sections.

274/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData in
Blueprint

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRMotionControllerData section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

275/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

The SenseGlove Unreal Engine Handbook
, File Edit Window Tools Help
(A1)
VRTemplateMap ¥ Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support

Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4.You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the
code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand.

276 /365

The SenseGlove Unreal Engine Handbook

File Edit View Debug Window Tc Help
VRPawn* x

No debug obj v

mpile | a t =g Diff v @Fmd *% Hide Unrelated

F Draw Hand x # Details
(e}

Off Pins to Create/Connect New Nodes.

Default

Compact Node Title
P
Call In Edite

cifier

EContoller Ha v
[Draw Hand . et
> by-Reference

M \y Blueprint
Outputs

+Add Q
Please press the +icon p——

GRAPHS

F ToggleMenu
F DrawHand
MACROS

5 Content Drawer [Outputlog EJCmd v & 1 Unsaved ¥ Re

6. Inside this function's event graph add a Get Motion Controller Data node from

SenseGlove > Tracking > XR Tracker > Get Motion Controller Data.

277 1365

The SenseGlove Unreal Engine Handbook

[Draw Hand All Actions for this Blueprint Context Sensitive

D X get motion controller data|

J Get Custom Primitive Data Index for Scalar Parameter (
F Get Custom Primitive Data Index for Scalar Parameter (
JF Get Custom Primitive Data Index for Vector Parameter (
JF Get Custom Primitive Data Index for Vector Parameter (
JF Get Custom Primitive Data Index for Vector Parameter |

F Get Custom Primitive Data Index for Vector Parameter (
Sense Glove
Components
Virtual Hand Component

FillGet Motion Controller Data)

Wrist Tracker Component

FillGet Motion Controller Data)

Tracking
XR Tracker

WillGet Motion Controller Datal

Get Motion Controller Data

Target is SGXRTracker Kismet Library

7. Then connect the functions Hand input parameter to the Get Motion
Controller Data's Hand input and right-click on the OutMotionControllerData
parameter and use the Break XRMotionControllerData node to break the struct
to it's fields.

278 /365

The SenseGlove Unreal Engine Handbook

[Draw Hand F Get Motion Controller Data

| 2
Hand Hand Out Motion Controller Data

Return Value

= Break XRMotionControllerData
XRMotion Controller Data Valid
Device Name Or
Application Instance ID
Device Visual Type
Hand Index
Tracking Status
Grip Position O»
Grip Rotation
Aim Paosition O
Aim Rotation
Palm Position O»

Palm Rotation

Hand Key Rotations
Hand Key Radii

Is Grasped

8. After this, we need to perform data validation by checking the return status of
the Get Motion Controller Data function and FXRMotionControllerData's
valid field. Then, we check if the motion controller device is being tracked and
indeed coming from a hand-tracking source. And, finally, we check whether we
have the positions and rotations for exactly 26 joints or not.

279 /365

The SenseGlove Unreal Engine Handbook

If we got the motion controller data and it's valid If the device is being tracked and it's a hand

Ensure that we have the data for exactly 26 joints

LENGTH o

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FXRMotionControllerData to the
DebugVirtualHand: :Draw function! But, since the point of this tutorial is to learn
how to consume the FXRMotionControllerData We ignore the last option.
Between the debug cubes or gizmos, we are going to choose the gizmos since
they better represent the rotations than the cubes.

280/ 365

The SenseGlove Unreal Engine Handbook

All Actions for this Blueprint Context Sensitive

I:_:]__
Rig VM
Save Game
Sense Glove
Backend
Components
Connect
Core
Debug
Cube
T Draw
T Draw
Gizmo
F Draw
F Draw
Virtual Hand
T Draw

Game Framework Draw
oot B

Target is SGDebug Virtual Hand Kismet Library

10. In the last step inside the braw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions Or Hand Key Rotations arrays from the FXRMotionControllerData
struct. Since we made sure both arrays have 26 elements before we reached
this step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop Or @ For Loop tO access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the praw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two Draw functions
and the only difference between the two is that one accepts an FQuat and the
other a FRotator forits Rotation input parameter. In this case, we use the
FQuat Vvariant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2, as the default
value might be too thick for drawing a joint gizmo.

281 /365

The SenseGlove Unreal Engine Handbook

F Draw Hand

Ensure that we have the data for exactly 26 joints

Appliction stance D e
Device Visual Type # LENGTH o
Hand ndex

Tracking Status

LENGTH e

Giip Position O

Hand Key Positions
Hand Key.
Hand Key Radii £3

s Grasped

Aray Index @

Completed >

11. Well, now the full implementation for the
should look something like this:

If we got the motion controller data and it's valid If the device is being tracked and it's a hand

fe 4 T

» NotTracked > B »
selston et oy B sectin
Tracked B 22

Ensure that we have the data for exactly 26 joints

LENGTH e

LENGTH e —-@

Draw a debug gizfmo per each joint
Zanil
I hC
e oy e SIS BRI

. Finally, go back to VRPawn's event graph and the following code to the Tick
event. Basically what we do here is call our newly implemented Draw Hand

twice, once for each hand.

282 /365

B My Blueprint
Add Q

GRAPHS

2 EventGraph

FUNCTIONS

F DrawHanc

entNearMotianController

The SenseGlove Unreal Engine Handbook

VRPawns

OFind " HideUnrelated i {(} Class Setiings ¢ Class Defaults B Simulation
= Viewport f Teleport Trace % EventGraph x F Draw Hand

v

Attempt to draw the left and right virtual hands every frame

& Draw Hand

& Draw Hand
€ Event Tick

=0 »
Delta Seconds Target [self Target [self
Hand
=

Hand

Begin Play - Set Tracking Origin to floor

€ Event BeginPlay T Branch 7 Set Tracking Origin

P — » Tuep — B
Condiion False [> Origin
7 Iz Head Mounted Display Enabled

Retumn Value

The vr.PixelDensity cvar will
for your Head Mounted Displ

More info: https://www.unred
changes-coming-to-vr-resol

f Execute CJ

Command

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands

inside your VR simulation.

283 /365

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData in
C++

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRMotionControllerData section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

284 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(AL)

VRTemplateMap % Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support
Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4, From the Tools menu choose New C++ class....

File Edit w Tools Build

L VRTemplateMap Q, t14 Editor Prefer

” ",,_-‘J Platforms
& New C++Class

) Find in Blueprints
=, C++ Header Preview

Cache Statistics

= CSVtosSVG
Localization Dashboard
A Merge Actors

Spectator

. Project Launcher

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

285/ 365

The SenseGlove Unreal Engine Handbook

Add C++ Class

NAME YOUR NEW PAWN

Enter a name for your new class. Class names may only contain alphanumeric characters, and may not contain a space.
When you click the "Create” button below, a header (.h) file and a source (.cpp) file will be made using this name.

Class Type Public Private

Name DebugPawn VirtualHandCpp (Runtime) v
Path C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/ i
Header File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h

Source File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp

Create Class Cancel

6. Name the new pawn class DebugPawn .

Add C++ Class

CHOOSE PARENT CLASS

Common Classes All Classes

This will add a C++ header and source code file to your game project.

C++ class with a default constructor and destructor.

Character
A character is a type of Pawn that includes the ability to walk around.

Pawn
A Pawn is an actor that can be 'possessed’ and receive input from a controller.

Actor
An Actor is an object that can be placed or spawned in the world.

Selected Class pawn (@
Selected Class Source Pawn.h
Cancel

286 /365

The SenseGlove Unreal Engine Handbook

7.Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from
the File menu choose the Reparent Blueprint class.

File | Edit =t View Debug Window Tools Help

Ll b

" Hide Unrelated
. Open Asset... CTRL+P | =

% Recent Blueprint Assets > Viewport

Save All CTRL+SHIFT+S
Choose Files to Save .. CTRL+ALT+SHIFT+5
Save CTRL+S

, Save As_. CTRL+ALT+5

Compile

Refresh All nodes

Reparent Blueprint

Merge

Developer 3

VP IUYETIET civ LT iy

Tl Change the parent of this Blueprint

9.In the new Reparent blueprint window choose DebugPawn as the new parent.

287 /365

The SenseGlove Unreal Engine Handbook

Reparent blueprint
> DebugPa
f WDebugPalll

Debug Pawn

1 item

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the AbebugPawn class has been set as the new
parent.

288 /365

The SenseGlove Unreal Engine Handbook

Default

Projected Tel.

Valid Telepor.

Teleport Trac
EEELTTER W0

Snap Turn De. -45,0

Teleport Trac. 0 Array elerr @ ﬁ

Tele port Pr :::j_ 0,0 0,0 0,0

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice, OpenXRHMD, SenseGloveBuildHacks, SenseGloveDebug,
SenseGloveSettings, and SenseGloveTracking modules as either a private or
public dependency.

289 /365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules

{
public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)

{
PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

PublicDependencyModuleNames.AddRange (new string[] { "Core",
"CoreUObject", "Engine'", "InputCore" });

PrivateDependencyModuleNames.AddRange (new string[]

{
"InputDevice",
"OpenXRHMD",
"SenseGloveBuildHacks",
"SenseGloveDebug",
"SenseGloveSettings",
"SenseGloveTracking"

s

// Uncomment if you are using Slate UI
// PrivateDependencyModuleNames.AddRange (new string[] { "Slate",
"SlateCore" 1});

// Uncomment if you are using online features
// PrivateDependencyModuleNames.Add("OnlineSubsystem");

// To 1include OnlineSubsystemSteam, add it to the plugins section 1in
your uproject file with the Enabled attribute set to true
}
}

12. Locate the C++ header and source file for the AbebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

290/ 365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"
#include "DebugPawn.generated.h"

UCLASS ()
class VIRTUALHANDCPP_API ADebugPawn : public APawn

{
GENERATED_BODY ()

private:
// The virtual hand drawing settings.
UPROPERTY (EditDefaultsOnly, Category='"DebugPawn",
meta=(AllowPrivateAccess="false"))
FSGDebugGizmoSettings HandDrawingSettings;

public:
// Sets default values for this pawn's properties
ADebugPawn () ;

protected:
// Called when the game starts or when spawned
virtual void BeginPlay() override;

public:
// Called every frame
virtual void Tick(float DeltaTime) override;

// Called to bind functionality to -input
virtual void SetupPlayerInputComponent(class UInputComponentx
PlayerInputComponent) override;

private:
// The method responsible for drawing a virtual hand.
void DrawHand (EControllerHand Hand) const;
+s
14. Modify the DebugPawn.cpp implementation file to look like this:

291/ 365

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#include '"DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn: : ADebugPawn ()
{
// Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
PrimaryActorTick.bCanEverTick = true;

// Set the default virtual hand drawing settings.
HandDrawingSettings = FSGDebugGizmoSettings{
1.0f,
FColor{255, 0, 0, 255},
FColor{®, 255, 0, 255},
FColor{®, ®, 255, 255},
false,
1.1f,
0,
0.2f,
b5

// Called when the game starts or when spawned
void ADebugPawn: :BeginPlay ()
{
Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)

{
Super::Tick(DeltaTime);
// Attempt at drawing the left/right virtual hands every frame.
DrawHand (EControllerHand::Left);
DrawHand (EControllerHand: :Right) ;
}

// Called to bind functionality to input
void ADebugPawn: :SetupPlayerInputComponent (UInputComponentx*

292 /365

The SenseGlove Unreal Engine Handbook

PlayerInputComponent)

{
}

Super: :SetupPlayerInputComponent (PlayerInputComponent) ;

void ADebugPawn: :DrawHand(const EControllerHand Hand) const

{

data

/1

Get the world and cache +it, if it's null we return early.

UWorld* World{GetWorld()};
if (!IsvValid(World))

{

return;

FXRMotionControllerData MotionControllerData;
const bool bGotMotionControllerData =
FSGXRTracker: :GetMotionControllerData(

/1
if
{

/1
if

/1

/]
if

World, Hand, MotionControllerData);

Return if the struct data is invalid!
(!bGotMotionControllerData || !MotionControllerData.bValid)
return;

Return if the device is not being tracked!

(MotionControllerData.TrackingStatus == ETrackingStatus: :NotTracked)
return;

Ensure that MotionControllerData.DeviceVisualType is a hand!
('ensureAlwaysMsgf (MotionControllerData.DeviceVisualType

== EXRVisualType: :Hand,
TEXT ("Invalid DeviceVisualType type!")))

Ensure that MotionControllerData.HandKeyPositions has the position
for 26 joints!
(!ensureAlwaysMsgf (MotionControllerData.HandKeyPositions.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyPositions count!")))

return;

293/ 365

The SenseGlove Unreal Engine Handbook

// Ensure that MotionControllerData.HandKeyRotations has the rotation

data
// for

26 joints!

if (!ensureAlwaysMsgf(MotionControllerData.HandKeyRotations.Num()

== EHandKeypointCount,
TEXT ("Invalid HandKeyRotations count!")))

return;

}

// Iterate over the hand joint positions and rotations!
for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)

{

const FVector& JointPosition{

s

MotionControllerData.HandKeyPositions[JointIndex]

const FQuat& JointRotation{

}s

/7
/7
/1
/7
/7
/7
/1

MotionControllerData.HandKeyRotations[JointIndex]

Draw a single joint's gizmo!

Please note that we could alternatively:

Use FSGDebugCube::Draw() to draw a cube.

Or use the FSGDebugVirtualHand::Draw() method and pass the
MotionControllerData directly to draw the virtual hand

all at once without iterating the joints. But, that's not
goal of this tutorial.

FSGDebugGizmo: :Draw(World, JointPosition, JointRotation,
HandDrawingSettings);

}
}

15. Now, rebuild the source code and go back to the VRTemplateMap, then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

294 / 365

The SenseGlove Unreal Engine Handbook

295/ 365

The SenseGlove Unreal Engine Handbook

Low-level Blueprint API

Unfortunately, due to Unreal Engine's limited availability of automated
documentation generation tools, there is no updated online documentation for the
SenseGlove Blueprint APIl. However, this does not mean that no documentation is
available. In fact, most of the Blueprint code is already documented within the
relevant header files. Any modules with the Kismet postfixin the name contain the
Blueprint documentation. For example, the Blueprint documentation for the core
module can be found inside the Source/SenseGloveCoreKismet/Public/SGCoreKismet
directory.

There is also an outdated Blueprint documentation hosted on GitLab. This
documentation was generated for the early releases of the plugin using
kamrann/KantanDocGenPlugin and kamrann/KantanDocGenTool, which is no longer
maintained.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine Blueprint project and a video tutorial:

SenseGlove UE Tutorial 04 | Basic C++ API and Blueprints

296/ 365

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://github.com/kamrann/KantanDocGenPlugin
https://github.com/kamrann/KantanDocGenTool
https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://youtu.be/9ICAH2ZUvVk
https://www.youtube.com/watch?v=9ICAH2ZUvVk

The SenseGlove Unreal Engine Handbook

Low-level C++ API

Due to Unreal Engine's limited availability of automated documentation generation
tools, there is no updated online documentation for the SenseGlove Unreal Engine
C++ API. However, this does not mean that no documentation is available. A
significant portion of the APl is documented within the relevant header files. For
example, the C++ APl documentation for the Core module can be found inside the
Source/SenseGloveCore/Public/SGCore directory.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

Nevertheless, since this plugin builds on top of the SGConnect and SGCoreCpp third-
party C++ libraries, the upstream documentation provides detailed information on
various aspects of the underlying SenseGlove C++ API.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine C++ project and a video tutorial:

SenseGlove UE Tutorial 04 | Basic C++ API and Blueprints

297/ 365

https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgconnect
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgcorecpp
https://senseglove.gitlab.io/SenseGloveDocs/native/cpp-reference.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://youtu.be/9ICAH2ZUvVk
https://www.youtube.com/watch?v=9ICAH2ZUvVk

The SenseGlove Unreal Engine Handbook

Platform Support Matrix

Windows Windows Windows Linux x86- A;'\Irr:::é 4
(MsSvC (MsvC (MSvC 64 (Nati.ve (Native
2017) 2019) 2022) Toolchain) Toolchain)
5.5) ¢) ¢ v2.2.X v2.2.X v2.2.X
5.4 X X v2.2.X v2.2.X v2.2.X
5.3) ¢ v2.2.X v2.2.X v2.2.X v2.2.X
5.2) ¢ v2.2.X v2.2.X v2.2.X v2.2.X
5.1 X i\ v2.0.x i\ v2.0.x i v2.0.x i\ v2.0.x
5.0) ¢ i\ v1.6.x i\ v1.6.x h v1.6.x i\ v1.6.x
4.27 i\ v1.4.x i\ v1.4.x i\ v1.4.x i v1.4.x i\ v1.4.x
4.26 i\ v1.0.x i\ v1.0.x) ¢ i v1.0.x) ¢
4.25 i v1.0.x i v1.0.x) ¢ i v1.0.x) ¢
4.24 i v1.0.x i v1.0.x X i v1.0.x X
4.23 i\ v1.0.x i\ v1.0.x) ¢ \ v1.0.x) ¢

298/ 365

The SenseGlove Unreal Engine Handbook

Linux

Windows Windows Windows Linux x86- AArch64
(MSVC (MSVC (MSVC 64 (Native (Native
2017) 2019) 2022) Toolchain) Toolchain)
4.22 i v1.0.x i v1.0.x X i v1.0.x X

Supported
» Not supported by the latest release and might be lacking features
X Not supported at all

? Unknown or untested
Remarks:

e Per Epic's Marketplace Guidelines in regards to Code Plugins (sections 2.6.3.d
and 3.1.b), we are only able to distribute or update the SenseGlove plugin for
the last 3 stable versions of Unreal Engine. As a result, we won't be able to
publish updates or bug fixes for the older versions of the Engine except on rare
occasions and only through our official repository on Microsoft Azure DevOps.

e All third-party libraries on Windows built against Windows SDK 1e.0.

e Oculus and VIVE support is only provided through the recommended Android
NDK versions by Epic Games.

e wjwwood/serial requires Android NDK API Level 28+ in order to be built
successfully.

o All third-party libraries target Android NDK API Level 29, thus any project
relying on the plug-in should be build with the same NDK API Level.

299/ 365

https://www.unrealengine.com/en-US/marketplace-guidelines
https://github.com/wjwwood/serial

The SenseGlove Unreal Engine Handbook

Planned Features Completion Status

Implemented as of v2.2.x

@ Full SenseGlove low-level core APl access through Unreal C++.

@ Full SenseGlove low-level core APl access through Blueprint.

@ DK 1 Support.

@ Nova 1 Support.

@ Nova 2 Support.

@ Support for Microsoft Windows as a development platform.

@ Support for GNU/Linux as a development platform.

@ Support for Microsoft Windows as a deployment platform.

@ Support for GNU/Linux x64 as a deployment platform.

@ Support for GNU/Linux AArch64 as a deployment platform.

@ Support for Android as a deployment platform.

@ Support for Oculus Quest 2 and Oculus Quest Pro.

@ Support for HTC VIVE Pro and HTC VIVE Focus 3.

@ Support for HTC VIVE Trackers and HTC VIVE Wrist Trackers.

@ On-device calibration for Android without the need for SenseCom.

@ Haptic feedback including force feedback, buzz, and thumper commands.
@ A customizable Grab component that could be added to any actor.

@ A customizable Touch component that could be added to any actor.

@ Ability to grab, release, and throw objects around.

@ Separation of the real and virtual hand rendering.

@ An out-of-the-box customizable SGPawn with the ability to be extended in
C++ and Blueprint.

@ Easy wrist/hand tracking debugging using the SenseGlove Debug module.
@ A generic Settings module with the ability to override settings.

@ C++/Blueprint interaction events such as OnGrabStateUpdated,
OnTouchStateUpdated, OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch.

@ A fall back to HMD and wrist tracker hardware auto-detection mechanism
when automatic detection of the wrist tracker hardware is desired.

300/ 365

The SenseGlove Unreal Engine Handbook

o @ OpenXR-compatible hand tracking (XR_EXT_hand_tracking) support.

o B FXRMotionControllerData compatible hand animation system on UE
versions 5.2, 5.3,and 5.4.

o B FXRHandTrackingState compatible hand animation system on UE versions
5.5+,

e B FXRMotionControllerData compatible wrist tracking system on UE versions
5.2, 5.3,and 5.4.

e B FXRHandTrackingState compatible wrist tracking system on UE versions

5.5+,

@ FXRMotionControllerData compatible hand interaction manipulation system

on UE versions 5.2, 5.3,and 5.4.

o B FxXRHandTrackingState compatible hand interaction manipulation system on
UE versions 5.5+.

o @ Ability to fallback to hand tracking when a glove is not present and use the
bare hands for interactions, or a combination of glove and hand tracking if no
motion controller input is detected.

o @ The SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,
Skeleton Editor, or Skeletal Mesh Editor.

o B Aflexible virtual hand animation system that can take the mesh bone's
transforms into account for a more reliable hand animation.

o B Ability to manage the Engine Scalability Settings through the SenseGlove
plugin in order to change the graphics settings on the fly.

Upcoming features planned for the v2.3.x release

Planned features long-term

o @ Get tracking input from sources other than a SenseGlove device.

o @ Be able to assign behaviors to different objects (meshes) in the scene (e.g.
Slider, Hinge, basic Grabables, etc).

o @ Make it so developers can define or extend their own behavior(s) to an
object through Code / Blueprint (e.g. | want a car door that is like a slider, but
follows a path rather than a straight line).

301 /365

The SenseGlove Unreal Engine Handbook

@ Make the hand(s) able to push around physics-driven objects (for as much
as their behaviors allow) (in backlog).

@ Be able to grab objects with up to 2 hands (and move them around with
both hands at the same time in a way that seems realistic).

@ Ensure that our virtual hands (and the objects they hold) do not phase
through other physics objects (e.g. walls and tables).

@ Allow other scripts to force a grab and/or release to occur (for example,
when you place it apart at the designated location, it gets removed from your
hand and snaps into place).

@ Have some form of weight simulation by making certain objects harder to
push, lowering manipulation speed, or making objects only moveable with two
hands.

@ (Optional) Make it so the fingers of your virtual hands do not clip inside the
meshes you are holding (certain people see this as an indicator of how fast the
Force-Feedback activates - but it's basically just rendering).

302 /365

The SenseGlove Unreal Engine Handbook

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic
Versioning.

[2.2.2] - 2024-11-08

This patch release addresses a few issues with both glove and hand-tracking.

Fixed

e Fixed a chain of critical bugs that gets triggered due to
GloveConnectivityCheckInterval getting passed as seconds to the engine
rather than milliseconds. Thus, the default or any large value for
GloveConnectivityCheckInterval causes noticeable long delays between glove-
connectivity-check intervals and consequently renders the hand-tracking state
invalid in certain situations when the
bFallbackToHandTrackingIfNoGloveDetected option is false.

[2.2.1] - 2024-10-23

This patch release focuses exclusively on updates to the documentation.

Documentation

e Updated all URLs, screenshots, and tutorials to reflect the transition from the
Unreal Engine Marketplace to Fab, Epic's new unified content marketplace.

303 /365

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

The SenseGlove Unreal Engine Handbook

e Revised documentation now points to the new home of the SenseGlove Unreal
Engine Plugin on Fab, ensuring users have access to the latest resources and
information.

[2.2.0] - 2024-10-22

This is a minor release with some breaking APl and ABI changes, focusing mainly on
migrating away from the deprecated FXRMotionControllerData in favor of
FXRMotionControllerState and FXRHandTrackingState on Unreal Engine 5.5+.

Added

e Completed support for the upcoming Unreal Engine 5.5 release.

e Added USGVirtualHandComponent: :GetMotionControllerState() and the
equivalent Blueprint
function uvirtualHandComponentKismetLibrary: :GetMotionControllerState on UE
5.5+.

e Added USGVirtualHandComponent::GetHandTrackingState() and the equivalent
Blueprint function UVirtualHandComponentKismetLibrary::GetHandTrackingState
on UE 5.5+.

e Added usGWristTrackerComponent::GetMotionControllerState() and the
equivalent Blueprint function
UWristTrackerComponentKismetLibrary: :GetMotionControllerState on UE 5.5+.

e Added USGWristTrackerComponent::GetHandTrackingState() and the equivalent
Blueprint function
UWristTrackerComponentKismetLibrary: :GetHandTrackingState on UE 5.5+.

e Added a variant of FSGDebugVirtualHand::Draw() and the equivalent Blueprint
function USGDebugVirtualHandKismetLibrary::Draw_FXRHandTrackingState()
which accept FXRHandTrackingState on UE 5.5+.

e Added the new member bTracked to the FSGXRHandState struct.

o Added FSGXRTracker::GetMotionControllerState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary::GetMotionControllerState() .

304 /365

The SenseGlove Unreal Engine Handbook

e Added FSGXRTracker::GetHandTrackingState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary::GetHandTrackingState() .

Fixed

e Additional minor fixes and improvements that may not be listed here.

Changed

e Replaced all internal usages of the FXRMotionControllerData struct with either
FXRMotionControllerState Oor FXRHandTrackingState on UE 5.5+,

e Deprecated USGVirtualHandComponent::GetMotionControllerData() on UE 5.5+.

e Deprecated uUSGWristTrackerComponent::GetMotionControllerData() on UE
5.5+.

e Deprecated the variant of FSGDebugVirtualHand::Draw() which accepts
FXRMotionControllerData as a parameter on UE 5.5+.

e Renamed USGDebugVirtualHandKismetLibrary::Draw tO
USGDebugVirtualHandKismetLibrary: :Draw_FXRMotionControllerData for more
clarification.

e Renamed an FSGXRHandState member from bReceivedJointPoses to
bHasReceivedJointPoses .

e Changed the FSGXRTracker::GetAllKeypointStates() Signature on UE 5.5+ to
match the IHandTracker interface APIchanges.

e The animation system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

e The wrist tracking system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

e The hand interaction manipulation on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

e The virtual hand debugging system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

305/ 365

The SenseGlove Unreal Engine Handbook

Documentation

e Added the documentation on consuming the FXRHandTrackingState structin
both Blueprint and C++.

e Updated the documentation on consuming the FXRMotionControllerData
struct.

e Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.4] - 2024-10-22

This is a bugfix release that delivers some documentation fixes.

Documentation

e Updated the documentation on consuming the FXRMotionControllerData
struct.

e Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.3] - 2024-10-11

This bugfix release centers on adding initial support for the upcoming Unreal Engine
5.5.

Added

e Added initial support for the upcoming Unreal Engine 5.5 release. Please note
that, while the plugin is functional, a few adjustments are still required to
address deprecation warnings. Specifically, the FXRMotionControllerData struct
needs to be replaced with the newly introduced FXRMotionControllerState and

306/ 365

The SenseGlove Unreal Engine Handbook

FXRHandTrackingState structs, along with adjustments to adhere to the new
hand-tracking APl changes.
e Added support for Epic Native Toolchain v23.

Fixed

e Fix a buginside usGVirtualHandComponent::PostEditChangeProperty() Where the
get member name check happens against the wrong class and member names.
e Additional minor fixes and improvements that may not be listed here.

Changed

e The SenseGlove libraries have been updated to v2.105.0-02a2e508 .

[2.1.2] - 2024-09-02

This is a bugfix release that addresses a few non-critical issues and documentation
fixes.

Fixed

e Fix a bug where the hands are always visible even when
bVvisibleWhenHandDataUnavailable is disabled.

e Fix a bug where the HandvisibilityChangedEvent eventis not triggered on the
virtual hand component visibility changes.

e Fix the wrong script name for USGHMDTrackerKismetLibrary .

e Fix the wrong script name for USGXRTrackerKismetLibrary

e Fix LogPython: Warning: 'SGHMDTrackerKismetLibrary' and
'SGXRTrackerKismetLibrary' have the same name
(SenseGloveHeadMountDisplayKismetLibrary) when exposed to Python. Rename

one of them using 'ScriptName' meta-data when packaging the game.

307 /365

The SenseGlove Unreal Engine Handbook

e Fix the non-existent default hand-mesh warnings polluting the logs when
packaging the game.

e Expanded the clickable area on the handbook index page revision buttons.

e Minor documentation fixes.

[2.1.1] - 2024-08-18

This is a bugfix release with no actual plugin code changes, mostly addressing issues
in the documentation and third-party dependencies caused by source control merge
conflicts.

Fixed

e Fix the messed up changelog file caused by cherry-picking merge conflicts
between the dev branch and the master branch.

e Fix a bug that causes a handbook revision mismatch when deploying the
handbook from the dev branch.

e Fixabugwhere SG_GIT_IS_SHALLOW_CLONE while building the handbook is always
setto yes even ifit's not a shadow clone because SG_DOT_GIT_SHALLOW_FILE
evaluates to an empty string when the .git/shallow file does not exist.

e Fix some documentation typos.

Removed

e Removed Android NDK r25 armv7 and x86 dependencies brought back by
mistake while merging v2.1.0 from the dev branch to the master branch.

[2.1.0] - 2024-08-16

This is a minor release focusing mainly on bringing OpenXR-compatible hand
tracking support (XR_EXT_hand_tracking) and Head-mounted Display automatic

308 /365

The SenseGlove Unreal Engine Handbook

detection for adjusting wrist tracker offsets automatically at runtime.

Added

e Added SenseGloveTracking and module which provides OpenXR-compatible
hand tracking by implementing XR_EXT_hand_tracking support, HMD auto-
detection, and SenseGlove device tracking.

e Added USenseGloveTrackingKismet module in order to expose part of the
SenseGloveTracking functionality to Blueprint.

e Added FSGXRTracker, the underlying main class that implements the OpenXR
compatibility.

e Added USGXRTrackerKismetLibrary in order to allow Blueprint to retrieve the
FXRMotionControllerData directly from our tracking module.

e Added the SGTrackingTypes header to the SenseGloveTypes module in order to
define and share SenseGloveTracking module types through this header across
the plugin modules.

o Afallback to HMD and wrist tracker hardware auto-detection mechanism has
been added to be triggered in situations when automatic detection of the wrist
tracker hardware is desired, e.g., either by not setting it explicitly, or setting it to
the default None value. Please note that this is still highly experimental and HTC
VIVE Focus 3 and HTC XR Elite cannot be distinguished in the current iteration.
Though, since the tracker devices and offsets for both headsets are the same in
the end it does not make a difference if both headsets are detected as each
other.

e Added ESGHeadMountedDisplayDevice enum with supported HMDs list.

e Added ESGViveHMDDetectionPriority enum in order to choose which headset
we attempt to detect between VIVE Focus 3 and VIVE XR Elite as we cannot
distinguish them, yet.

e Added the FSGHMDTracker utility class, in order to easily gather information
about the HMD device at runtime.

e Added USGHMDTrackerKismetLibrary which exposes the equivalent C++ HMD
auto-detection functionality to Blueprint.

e Added FSGHMDTrackingSettings config struct.

e Added the FSGGloveTracer utility class, in order to easily check the left or right
glove connectivity or retrieve the connected glove instances.

309 /365

The SenseGlove Unreal Engine Handbook

Added USGGloveTrackerKismetLibrary which exposes the equivalent C++
functionality to Blueprint.

Added FSGGloveTrackingSettings config struct.

Added FSGTrackingSettings config struct.

Added FSGHandTrackingSettings config struct.

Added FSGWristTrackingDebuggingSettings config struct.

Added FSGVirtualHandSettings config struct.

Added FSGVirtualHandAnimationSettings config struct.

Added FSGVirtualHandDebuggingSettings config struct.

Added FSGVirtualHandGrabSettings config struct.

Added FSGVirtualHandHapticsSettings config struct.

Added FSGVirtualHandMeshSettings config struct.

Added FSGVirtualHandPhalangesLengthSettings config struct.

Added FSGVirtualHandTouchSettings config struct.

Added USGVirtualHandComponent::OnHandVisibilityChanged() event in order
to notify other components/actors whenever the virtual hand mesh appears or
disappears (for example, this could happen when a glove is
connected/disconnected).

GetMotionControllerData() has been introduced to the
USGVitual[HandComponent in order to retrieve the OpenXR-compatible glove
data in Unreal's FXRMotionControllerData format.

Added FSGVirtual[HandAnimInstanceProxy::GetMotionControllerData and many
more accessor methods usable only by child classes to allow consumption of
the data required for manipulating the virtual hand mesh animations.
GetMotionControllerData() has been introduced to the
USGWristTrackerComponent in order to retrieve the OpenXR-compatible glove
data in Unreal's FXRMotionControllerData format.

Added USGGrabComponent::SimulatePhysics() method.

Added FSGDebugCube.

Added FSGDebugCubeSettings.

Added the SenseGloveDebugKismet module in order to allow drawing of
debugging, cubes, gizmos, and virtual hands from Blueprint.

Added USGDebugCubeKismetLibrary in order to expose the FSGDebugCube
functionalities to Blueprint.

Added USGDebugGizmoKismetLibrary in order to expose the FSGDebugGizmo
functionalities to Blueprint.

310/ 365

The SenseGlove Unreal Engine Handbook

Added USGDebugVirtualHandKismetLibrary in order to expose the
FSGDebugVirtualHand functionalities to Blueprint.

Added a new static Draw() method overload to DebugGizmo which allows
passing an FQuat instead of a FRotator.

Introduced a new FXRMotionControllerData compatible hand animation system
with the ability to take the mesh bone's transforms into account for a more
reliable hand animation.

Introduced a new FXRMotionControllerData compatible wrist tracking system.
Introduced a new FXRMotionControllerData compatible hand interaction
manipulation system.

Added the ability to fallback to hand tracking when a glove is not present and
use the bare hands for interactions, or a combination of glove and hand
tracking if no motion controller input is detected.

Added the SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,
Skeleton Editor, or Skeletal Mesh Editor by extending the Unreal Editor.

Added FSGAssetUtils editor-only class.

Added FSGContentBrowserExtension editor-only class.

Added FSGPIluginStyle editor-only class.

Added FSGSocketsEditor editor-only class.

Added FSGSocketsEditorCommands editor-only class.

Added the FSGInitializationSettings config struct in order to control how the
plugin is initialized.

Introduced the FSGGameUserSettings for managing the Engine Scalability
Settings through the SenseGlove plugin in order to change the graphics
settings on the fly.

Added USGGameUserSettingsKismetLibrary in order to allow all the Engine
Scalability Settings to be managed from the Blueprint side.

Added FSGGameUserSettingsSettings config struct.

Added the SenseGlove console commands: SG_GetEngineScalabilitySettings()
and SG_SetEngineScalabilitySettings(Scalability).

Added SGHardwareBenchmarkingSettings config struct.

Introduced ESGEngineScalabilitySettings enum.

Added FSGVirtualHandSettingsOverrides config struct used by the new settings
override system.

Added SGWristTrackingSettingsOverrides config structured by the new settings
override system.

311 /365

The SenseGlove Unreal Engine Handbook

e Added support for Android APl level 32 in addition to the API level 29.

¢ Introduced the SenseGlove Unreal Engine Handbook as an attempt at
documenting the SenseGlove Unreal Engine Plugin.

e Merged the pack utility branch to the plugin's source code at /Packager which
adds the SenseGlove Unreal Engine Marketplace Packager v0.4.0-a65bb20
binaries and configurations.

Fixed

e Fixed a bug when the virtual hand inside the game is not visible but still collides
with other objects inside the scene, mistakenly triggering events like
OnGrabStateUpdated and OnTouchStateUpdated.

e Fixed a bug where USGGrabComponent's bAffectPhysicsState does not
enables physics on its owning actor at BeginPlay() .

e Fixed various wrong Kismet script names and their class exports.

e Fixed the display name for various overloads of the Blueprint-exposed function
Queue Command Vibro Level to expose sensible display names.

e Some Android UPL tweaks, permission, and build fixes.

e Many other large and small fixes and improvements that might not be listed
here.

o Afew small bugfixes that have already been backported to the v2.0.x series.

Changed

e Now, if bValidatelfDefaultClassesAreSGCompliant option from
FSGInitializationSettings is enabled (default) the SenseGlove plugin checks for
default SenseGlove-compliant GameMode, Gamelnstance, etc, at module
initialization and tries to set to default, native SenseGlove classes, if any of
those default classes are not a SenseGlove or a SenseGlove-derived class.

e The USGSettings has been fully revamped with more customizations added and
categorized in a different manner adding many new structs and removing
some, in order to have fine-grained control over the various aspects and
functionality of the plugin components.

e The USGSettings constructor visibility has been changed from public to private.

312 /365

The SenseGlove Unreal Engine Handbook

The Settings override system has been overhauled as well affecting how we
override settings from the USGVirtualHandComponent and
USGWristTrackerComponent.
The SenseGlove libraries have been updated to v2.104.1-55fddbd2.
GetHandPose() has been replaced by GetMotionControllerData inside
USGVirtualHandComponent (see the relevant entry in the Added and Removed
sections).
Many functions inside USGVirtualHandComponent for retrieving bone names
or reference transforms has been renamed to return different data types; e.g.
GetLeftHandFingerBoneNames(), GetRightHandFingerBoneNames(),
GetLeftHandFingerBoneName(), and GetRightHandFingerBoneName() renamed
to GetLeftHandBoneNames(), GetRightHandBoneNames(),
GetLeftHandBoneName(), and GetRightHandBoneName() respectively.
bHiddenInGamelfNoGloveDetected UPROPERTY from
USGVirtualHandComponent has been renamed to
bVisibleWhenHandDataUnavailable and accordingly all of its getters and
setters; bVisibleWhenHandDataUnavailable = false now acts as
bHiddenInGamelfNoGloveDetected = true, and vice-versa.
USGWristTrackerComponent now uses FXRMotionControllerData for wrist
tracking instead of calculating the wrist location by calling the SenseGlove API.
FSGVirtualHandAnimInstanceProxy now relies on FXRMotionControllerData to
animate the hands instead of a TMap of bone names and rotations which
allows it to also apply the bone locations.
The new OpenXR animation system now takes into account the mesh bone's
transforms for a more reliable hand animation.
FSGDebugVirtualHand::Draw now accepts a FXRMotionControllerData
parameter instead of all WristLocation, WristRotation, JointPositions, and
JointRotations parameters.
FSGDebugVirtualHandSettings has been renamed to
FSGVirtualHandDebuggingSettings.
The value for USGGrabComponent's AttachmentSocketName uproperty now
defaults to the value of the plugin's GrabAttachPointSocketName instead of
Name_NONE.
The USGGrabComponent now enables bGravityEnabled, bSimulatePhysics,
and calls wakeRigidBody On its owning actor at BeginPlay() if
bAffectPhysicsState is enabled.

313/365

The SenseGlove Unreal Engine Handbook

e Updated the Directory Structure section of the main README file to reflect the
latest toolchain support status.

e The /CHANGELOG.md file has been migrated to
/Handbook/src/overview/changelog.md

e The /LICENSE.md file has been migrated to /Handbook/src/license/senseglove-
unreal-engine-plugin.md

e The /LICENSE-THIRD-PARTY.md file has been migrated to
/Handbook/src/license/third-party.md and every third-party component's
license has been split; adding /Handbook/src/license/senseglove-sdk.md for the
SenseGlove SDK, /Handbook/src/license/boost-cpp-libraries.md for the Boost
C++ Libraries, and /Handbook/src/1license/serial-communication-library.md for
the Serial Communication Library.

e The Platform Support Matrix section of the main README file has been
migrated to /Handbook/src/overview/platform-support-matrix.md .

e The Planned Features Completion Status section of the main README file has
been migrated to /Handbook/src/overview/planned-features—completion-
status.md .

e The Directory Structure section of the main README file has been migrated to
/Handbook/src/overview/directory-structure.md .

e The SenseGlove settings' main config struct is now marked as DefaultConfig
which means it does not require to be saved when settings are changed and
they take effect immediately as the user updates them.

e Replaced all bitfield uproperties with booleans.

e Changed the DocsURL from the old Blueprint docs website to the new
SenseGlove Unreal Engine Handbook website.

e The Blueprint signature for various overloads of the Blueprint-exposed function
Queue Command Vibro Level has been changed to expose sensible display
names.

Removed

e Dropped support for Unreal Engine 5.1 and Epic Native Toolchain v20 (used to
build UE 5.0 and 5.1 Linux dependencies).

e Removed the Allbreaker virtual hand model as it's no longer compatible with
the SenseGlove plugin.

314 /365

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://unreal.docs.senseglove.com/
https://unreal.docs.senseglove.com/

The SenseGlove Unreal Engine Handbook

e Removed ASGVirtualHandActor as it was experimental and we no longer
maintain it and haven't been doing so for a long time.

e Removed FSGVirtualHandAnimInstanceProxy::GetBonesRotations().

e Removed USGVirtualHandComponent::GetHandPose() and it's no longer
possible to get the hand pose data from USGVirtualHandComponent as
GetHandPose() has been removed. If you need it, you could always use the
SenseGlove low-level APl to retrieve it from the glove.

e Removed also GetFingerBoneName(), GetFingerBoneRefTransformy(),
GetFingerBoneRefRotation() and GetFingerBoneRefRotation() from
USGVirtual[HandComponent.

e Removed some remnants of UE 5.1 and older releases from the C++ code.

e Removed the pack utility branch and merge it to the plugin's source code at
/Packager .

Known Issues

e With the new OpenXR release, the separation of the real and virtual hand
rendering is broken. The reason is the animation system now uses the OpenXR
data in the world transforms which yields better animations, but comes at the
cost of overriding the the hand position set by the wrist tracker component's
position and rotation. If FXRMotionControllerData is invalid and
bvisibleWhenHandDataUnavailable is enabled for example, the system works as
expected, since the animation system won't proceed to animate the hand
meshes without valid FXRMotionControllerData . Since the animation system is
only aware of the hand mesh it's animating versus the real hand and virtual
hand meshes it means either it should become aware of the physics events like
begin and end overlap events and also the real vs virtual hands, or it should
resort back to animating the virtual hand meshes in local or component space.
This release marks this feature as broken for now until we come up with a
reasonable solution in the future.

e The UXRDeviceVisualizationComponent provided by Unreal Engine is used in the
SGPawn class as ControllerVisualizerLeft and ControllerVisualizerRight for
implementing the wrist tracking hardware visualization feature. However, it is
not compatible with the new OpenXR system in certain scenarios. For instance,
when the motion controllers serve as wrist tracking hardware since the
SenseGlove plugin is now introduced to the engine as an OpenXRHandTracking

315/ 365

The SenseGlove Unreal Engine Handbook

system, it causes the UXRDeviceVisualizationComponent to visualize the wrist
tracking hardware at coordinates (0.0f, 0.0f, 0.0f) instead of their actual location
and rotation in the world. This happens because the component incorrectly
registers them as inactive, possibly because it's assumed hand tracking and
motion controllers cannot be in use at the same time. Currently, we use this
feature solely for debugging, and we have an alternative in the form of wrist-
tracking debug gizmos, which can be toggled on or off via the settings system.
In future releases, we might remove this feature due to its incompatibility,
unless we find a solution to make the UXRDeviceVisualizationComponent work
with the new system. Alternatively, we may develop our own version of the
UXRDeviceVisualizationComponent .

Although the SenseGlove OpenXR implementation is fully compatible with the
I0penXRHMD interface and the FOpenXRHMD XRTrackingSystem, it is not
compatible with the FoculusXRHMD backend provided by the Meta XR plugin. The
same issue likely applies to the VIVE OpenXR plugin. So, if these plugins are
enabled in your project, the SenseGlove OpenXR will not function as intended,
effectively breaking the plugin's functionality. It seems these plugins are
necessary in order to make the fallback to the hand-tracking feature work on
Android. While we may add support and compatibility with Meta XR and VIVE
OpenXR plugins in the future, for the time being, if your project requires these
plugins, we advise continuing with the v2.0.x release of the SenseGlove Unreal
Engine plugin until this issue is addressed.

[2.0.8] - 2024-07-15

This is a bugfix release that contains a somewhat important bugfix backported from
the next release of the plugin as documented below.

Fixed

e Fix a bug where the SGPawn right-hand grab colliders' default size is mistakenly

set to the default value for the left-hand grab colliders at CDO initialization time.

316 /365

The SenseGlove Unreal Engine Handbook

[2.0.7] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only fixing issues with
binary assets incompatible with UE versions earlier than 5.4.

Fixed

e Make the Allbreaker assets compatible with UE5.1+ again as the v2.0.5 update
breaks compatibility with UE versions earlier than 5.4, thus leaving the engine
unable to load those assets.

[2.0.6] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only removing
development/test assets from UE 5.3 that were never meant to be shipped.

Removed

e Removed the dev/test virtual hand models that leaked into the 5.3 branch.

Fixed

[2.0.5] - 2024-05-22

This is a bugfix release with no actual plugin code changes, only focusing on fixing
the Allbreaker virtual hand model issues.

317 /365

The SenseGlove Unreal Engine Handbook

Fixed

e Fix the wrong palm bone names on the Allbreaker virtual hand models.

[2.0.4] - 2024-05-17

This is a bugfix release with no actual plugin's code change.

Fixed

e Fix our in-house Unreal Engine Marketplace submission tool's configurations
where the Content folder (containing the Allbreaker hand model) is mistakenly
ignored during the submission. This release reintroduces the Virtual Hand
Model and its material missing from the previous release.

e Fix the SenseGlove.uproject's wrong versioning submitted to the Unreal Engine
Marketplace.

[2.0.3] - 2024-05-15

This is a bugfix release addressing mostly RunUAT build issues on Unreal Engine 5.4.

Fixed

e Fix UE 5.4 RunUAT build issue: "Asking CppCompileEnvironment for a single
Architecture, but it has multiple Architectures (arm64, x64)", affecting
SenseGloveConnectimpl and SenseGloveCorelmpl modues.

e Improved target platform detection when building SenseGloveConnectimpl and
SenseGloveCorelmpl modules and also distinguishing the x64 builds from
arm64 on Microsoft Windows.

e Fix other UE 5.4 RunUAT build issues, mostly caused by missing headers.

318/ 365

The SenseGlove Unreal Engine Handbook

Removed

e Removed support for Android armeabi-v7a and x86 architectures as they are
no longer supported by the supported engine versions.

[2.0.2] - 2024-04-25

This is a patch release with no code changes.

Added

¢ Introduce official Unreal Engine 5.4 support to the Unreal Engine Marketplace.

Changed

e Updated the Platform Support Matrix with the latest changes. This is the last
release to support Unreal Engine 5.1 as we no longer are able to push updates
for this release to the Unreal Engine Marketplace. The v2.0.1 release for Unreal
Engine 5.1 can be obtained from the Unreal Engine Marketplace, and v2.0.2
through our Microsoft Azure DevOps repositories. Please note that there are
no actual code changes between these two releases and in terms of

functionality they are almost identical.

[2.0.1] - 2024-04-15

This is a bugfix release.

319/ 365

The SenseGlove Unreal Engine Handbook

Fixed

e Fix a buginside both SGVirtualHandComponent and
SGWristTrackerComponent where the connected glove's UObject instance gets
destroyed and re-instantiated every frame. With this fix now the glove instance
will be created or destroyed only when a glove connects to or disconnects from
the system.

e Update the outdated Platform Support Matrix and its remarks section to reflect
the latest status information.

e Fix the wrong header file description sections for the header files inside

SenseGloveKismet/Public/SGKismet/ .

Changed

e SenseGlove libraries have been updated to v2.102.0-35d4de3f.
e Together, SenseGlove libraries v2.102.0-35d4de3f and SenseCom v1.6.1 remove
the need to call ResetCalibration every time and are able to store and load

calibration profiles from disk.
e SesenGloveBackend module is no longer calling
FSGHandLayer::ResetCalibration on every backend initialization.

[2.0.0] - 2024-03-22

This is the second major release of the SenseGlove Unreal Engine Plugin adding
support for Nova 2 with enormous breaking changes to the current C++ and

Blueprint APIs.

Added

e Added support for the SenseGlove Nova 2 devices.

e Added support for Quest 3 controllers.
e Various classes have been added to the APl in order to implement the new
functionalities and features from the latest upstream SenseGlove libraries.

320/ 365

The SenseGlove Unreal Engine Handbook

e Added initial support for the upcoming Unreal Engine 5.4 release.

e Added a pair of default production-ready virtual hand meshes for the left and
right hands, courtesy of Allbreaker LLC Columbia. For usage and redistribution,
please consult the LICENSE-THIRD-PARTY.md file.

Fixed

o Afew critical bug fixes that have already been backported to the vi1.x.x series
through v1.9.3 to v1.9.8 releases.

e Revamped the way we do FVector <-> SGVect3D, FQuat <-> SGQuat, and
SenseGlove <-> Unreal Engine angles conversions in order to properly translate
between the SenseGlove and Unreal Engine coordinate systems.

o Allow the C++ compiler the opportunity to perform RVO/NRVO if applicable.

e Fix the modules' order inside the .uplugin file.

e Fix a build issue inside FSGArrayUtils::FromStdVector introduced by newer
MVSC updates due to stricter implicit uint64 to int32 conversions.

e Fix a build issues inside FSGArrayUtils when performing non-Unity builds due to
the missing header.

e Fix other build issues in USGDevice, USGNovaGloveSensorData, FSGDevicelmpl,
and FSGSenseGloveVarsimpl when performing non-Unity builds due to the
missing relevant headers.

e Fix changelog formatting.

e Some other improverment and fixes.

Changed

e SenseGlove libraries have been updated to v2.101.12-62b1be11.

e The SenseGlove Unreal Engine Plugin now declares the OpenXR plugin as a
dependency, so that the OpenXR plugin will be enabled automatically as soon
as the SenseGlove Unreal Engine Plugin gets enabled.

e Various classes and parts of the APl have been changed in order to reflect and
adhere to upstream SenseGlove libraries.

e Reverse the Platform Support Matrix order from newer Unreal Engine versions
to the older ones.

321/365

https://www.allbreaker.co/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/LICENSE-THIRD-PARTY.html

The SenseGlove Unreal Engine Handbook

e Clarify the engine support policy in the main readme file by adding the
corresponding references from the Epic Marketplace Guidelines and a URL to
their guidelines page.

e The SGTouchComponent uproperties BuzzDuration and BuzzLevel now utilize
different different names in order to correspond to the underlying APl changes.
They have been renamed to VibrotactileDuration and VibrotacktileLevel.

e The SGTouchComponent uproperties ForceFeedbackLevel and BuzzLevel (now
VibrotacktileLevel) parameters type have changed from int32 to float with the
value range varying between 0.0f to 1.0f instead of 1 to 100 in order to
correspond to the underlying APl changes.

e The SGVirtualHandComponent now assumes the default grab point's name as
GenericGrabPoint instead of GrabPoint as default if not specified in the Unreal
Blueprint Editor.

e The SGPawn on UE 5.2+ now utilizes UXRDeviceVisualizationComponent in
order to properly display the controller meshes shipped with Unreal Engine's
OpenXR plugin, or a user-provided mesh. On UE 5.1 this could still be set on the
WristTrackerLeft and WristTrackerRight components. Please note that despite
the fact that on UE 5.2+ it's still possible to utilize the WristTrackerLeft and
WristTrackerRight for setting the controller meshes, this has been deprecated
in UE 5.2+ and is no longer supported.

Removed

e Various classes and parts of the APl have been removed in order to reflect and
adhere to upstream SenseGlove libraries.
e Removed the redundant SGIC_int32_Ref interop type.

[1.9.8] - 2024-03-12

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

322/ 365

The SenseGlove Unreal Engine Handbook

Fixed

e Fix a bug where the right-hand mesh is always hidden inside the game no
matter whether the right glove is connected or not.

e Fix acrash inside the USGHandPose::FromHandAngles method.

e Some performance optimizations by utilizing MoveTemp in return statements.

e Some improvements applied to the source code.

e Some other minor fixes.

Changed

e The BonesRotations TMap is no longer a public field of
FSGVirtualHandAnimInstanceProxy and instead could be retrieved by calling
the GetBonesRotations() method.

[1.9.7] - 2024-02-18

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

Fixed

e Fix various bugs inside the SGPlayerController which occur when the thumb
and pinky fingers are simultaneously touching different SGTouchComponents,
or only one of them is in touch with such a component. In this case pinky's buzz
and force-feedback levels are determined from the SGTouchComponent that is
in collision with the thumb instead of the one that is touched by the pinky. Or,
the pinky could ignore the buzz and force-feedback level if the thumb is not in
collision with an SGTouchComponent. Or, the pinky could have reacted with a
buzz or force feedback while only the thumb is in contact with an
SGTouchComponent.

e Fix the BuzzDuration UPROPERTY range in order not to get clamped at 100.0f
and also use float values for ClampMin and UIMin specifiers instead of integer

323/365

The SenseGlove Unreal Engine Handbook

values.

[1.9.6] - 2024-02-14

This is a bugfix release.

Fixed

e Fix afew critical bugs inside the NovaGlove class where the higher levels of the
APl including constructors, Parse, and NewNovaGlove methods mistakenly
instantiate a SenseGlovelmpl class instead of a NovaGlovelmpl class.

[1.9.5] - 2024-02-09

This is a bugfix release.

Fixed

e Fix a wrong type-casting inside SGDeviceModel::ParseFirmware where
OutMainVersion and OutSubVersion arguments are getting passed to the lower
levels of the API. This could potentially result in a segfault at the FFl boundary
between lower and higher levels of the API.

[1.9.4] - 2024-02-08

This is a bugfix release addressing mostly Blueprint APl issues with ABI breaking
changes inside the Blueprint layer, backported from the next major release of the
plugin as documented below.

324 /365

The SenseGlove Unreal Engine Handbook

Fixed

e Fix the Blueprint Parse function signature for the NovaGlovelnfoKismetLibrary
where the OutGlovelnfo passed by the caller was never actually assigned as it
was not getting passed by reference.

e Changelog formatting.

[1.9.3] - 2024-02-03

This is a hotfix release addressing a few critical issues that might result in crashes or
malfunctions for users of the low-level SenseGlove API, backported from the next
major release of the plugin as documented below.

Fixed

e Fix a potential memory corruption inside one of the SGBasicHandModel
constructors where the StartPositions parameter gets passed as the
StartRotations parameter to lower levels of the API.

e Fix a potential memory corruption inside one of the SGSenseGlovelnfo
constructors where the StartPositions parameter gets passed as the Functions
parameter to lower levels of the API.

e Fix a potential memory corruption where inside the
SGHapticGloveCalibrationSequence::GetCurrentinstruction method, the return
statement of the function is getting assigned to the const parameter
NextStepKey, thus the return statement of the function will always be empty as
well.

e Fix a potential memory corruption where inside one of the overloads of the
SGSenseGlovelmpl::GetGlovePose method, the out parameter of the method is
getting passed as the SensorData parameter to the lower levels of the API.

e Fix multiple Equals methods for a few classes such as SGInterpolationSet,
SGNovaGloveHandProfile, SGNovaGlovelnfo, SGSenseGloveHandProfile,
SenseGlovelnfo, SenseGlovePose, where the Equal method compares the
current instance against itself instead of the other instance passed to as the
parameter to the method.

325/365

The SenseGlove Unreal Engine Handbook

e Removed a redundant code statement inside the
SGNovaGlovelmpl::GetSubFirmwareVersion method.

e Some minor const correctness fixes.

e Some other minor code fixes and improvements.

e Fix the wrong version numbers inside the paltform support matrix and the
main .uplugin file.

e Minor changelog fixes.

e Bumped the copyright years.

[1.9.2] - 2023-11-03

Added

e Added a list of planned features and their completion status to the main
README file.

Fixed

e Abugwhere the released actor is going to be NULL whenever the
OnActorReleased event fires.

[1.9.1] - 2023-10-11

Fixed

e Add the missing Unreal Engine C++ header to files that rely on the
ENGINE_*_VERSION macros in order to fix the Epic Store build failures on UE
5.3.

326 /365

The SenseGlove Unreal Engine Handbook

[1.9.0] - 2023-10-10

Changed

e The BlueprintimplementableEvent UFUNCTION specifier for the
OnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed,
OnActorReleased, OnActorBeginTouch, and OnActorEndTouch events have
been changed to BlueprintNativeEvent in order to allow them to be
implemented from the child C++ classes as well. This won't break any existing
Blueprint code that relies on the previous BlueprintimplementableEvent
signature.

Fixed

e Add a missing release note entry for the v1.8.0 release to the changelog file.

[1.8.0] - 2023-10-10

Added

e Introduced new SGPawn events: OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch.

e Exposed OnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed,
OnActorReleased, OnActorBeginTouch, and OnActorEndTouch events to
Blueprint as BlueprintimplementableEvent.

Fixed

e Fix a bug where the OnTouchStateUpdated event is mistakenly triggered
instead of the OnGrabStateUpdated when the right thumb fingertip grab
collider overlaps with a grabbable actor.

327 /365

The SenseGlove Unreal Engine Handbook

e Fix the DECLARE_EVENT macro signature for OnGrabStateUpdated and
OnTouchStateUpdated events.

[1.7.0] - 2023-09-14

Added

e Introduce SGGamelnstance, a customized SenseGlove game instance for future

use.
e Added the new SenseGloveBackend and SenseGloveBackendKismet modules.

e Added SG_CPP20 C++ macro for C++20 detection, which is now default from UE

5.3 onwards.
e Added SG_CAPTURE_THIS C++ macro as a workaround for error C4855: implicit

capture of 'this' via '[=]' is deprecated in /std:c++20 in order to build the same
lambda captures without extra #ifdefs on all supported engine versions.

Changed

e SenseGlove libraries have been updated to v2.12.0-19c9854.
e SGCorelmpl/SGPlatform has been moved to SGBuildHacks/SGPlatform.

Fixed

e Proper initialization of the SenseGlove backend in order to fix a bug in certain
situations where SGConnect:Init() gets called every frame.
e Some other minor fixes and improvements.

328/ 365

The SenseGlove Unreal Engine Handbook

[1.6.1] - 2023-08-14

Fixed

e Fix Unreal Engine 5.0 build issues.
e Minor documentation fixes.

[1.6.0] - 2023-08-14

Added

e Added support for the upcoming Unreal Engine 5.3.

e Now, the hand's velocity is applied to grabbed actors after being released from
the hand.

e Introduce the real hands to the SenseGlove module (SGPawn) API.
e Added separation of the virtual and real hand rendering.

Fixed
e Fix the wrong default debug virtual hand gizmo colors when initialized using the

default constructor.
e Some minor performance fixes and improvements.

Changed

e SenseGlove libraries have been updated to v2.11.0-b775a05.

329/ 365

The SenseGlove Unreal Engine Handbook

[1.5.3] - 2023-07-19

This is a hotfix release mostly addressing Android Bluetooth performance issues.

Fixed

e Minor changelog fixes.

Changed

e SenseGlove libraries have been updated to v2.10.1-3b0e7c9.

[1.5.2] - 2023-07-19

This is a hotfix release mostly addressing Android-related issues.

Fixed

e Fix a build issue with Android shipping builds due to sgconnect.jar not getting
copied automatically in the AFSProject which is compiled for shipping builds
when AndroidFileServer (AFS) is enabled.

e Minor changelog fixes and some source code formatting fixes.

[1.5.1] - 2023-07-13

This is a hotfix release addressing a few critical issues introduced by the recent
changes.

330/ 365

The SenseGlove Unreal Engine Handbook

Fixed

e Fix a wrist tracker bug where left and right hands' wrist trackers are mistakenly
tracking the opposite hand's motion source.
e Fix a bug where the right hand is not able to do grab or release.

[1.5.0] - 2023-06-16

This release breaks ABI/API compatibility with the previous versions in some areas as
documented below.

Added

e Added HTC VIVE Focus 3 positional tracking hardware enum.

e Added support for the Meta Quest Pro, HTC VIVE, and HTC VIVE Focus 3
positional tracking hardware.

e Added two options to the wrist tracker settings (to the global plugin settings
and the overrides in the wrist tracker component) in order to be able to specify
a custom motion source for the left and right hands, so that it allows SteamVR-
based trackers such as HTC VIVE or HTC VIVE Focus 3 to operate with the
SGPawn.

Fixed

e Fixa bug where SteamVR trackers such as HTC VIVE and HTC VIVE Focus 3's
wrist orientation and location were not being tracked.

Changed

e Fully refactored the top-level configurations in the settings system into
USTRUCTSs.
e SenseGlove libraries have been updated to v2.10.0-12133ac.

331/365

The SenseGlove Unreal Engine Handbook

Removed

e Dropped support for the Epic Native Toolchain v19, MSVC v141 (Visual Studio
2017), and thus Unreal Engine 4.27 as it has been marked as deprecated since

v1.4.x.
e Removed any kind of support for Oculus Touch (Oculus Rift S and Oculus Quest

1) positional tracking hardware, thus the enum as well.
e Removed any kind of support for Pico Neo 2 positional tracking hardware, thus

the enum as well.
e Removed any kind of support for Pico Neo 3 positional tracking hardware, thus

the enum as well.

[1.4.3] - 2023-06-01

This is a hotfix release addressing a critical Android crash.

Fixed

e Fix a critical Android crash that happens where the default development hand
meshes are not found, which means almost always since we don't ship any

default virtual hand mesh at the moment.
e Minor changelog release formatting fix in order to stay consistent.

[1.4.2] - 2023-06-01

This is a hotfix release addressing a few critical issues.

Fixed

e Fix build issues with certain compilers when the Unreal Engine version is older
than 5.2.

332 /365

The SenseGlove Unreal Engine Handbook

e Reintroduced the Virtual Hand and the Wrist Tracker debug gizmos which have
temporarily been disabled due to a bug in the settings system.
e Some minor changelog fixes.

[1.4.1] - 2023-05-29

This is a bugfix release with a focus on Android build issues.

Fixed

e Fix an Android Gradle build issue that happens when the game's package name
won't start with com.senseglove.*.

e Suppress a grade warning for non-armé4 architectures when the build target is
Android.

Removed

e Remove dead Gradle code from the Android module.

[1.4.0] - 2023-05-19

This release breaks ABI/API compatibility with the previous versions.

Added

e Added support for the stable release of Unreal Engine 5.2 (the preview release
has been supported since v1.2.0).

e Added Linux AArch64 platform support.

e Added a new Grab component that can turn any actor into a grabbable object.

333/365

The SenseGlove Unreal Engine Handbook

e Added a new Touch component that enables haptic feedback such as Buzz and
Force-Feedback commands.

e Added an optional feature in order to automatically stop all haptics on the

EndPlay event, wherever the virtual hand component is used. By default, it's
enabled.

Fixed

e Fix Blueprint signatures for USGVirtualHandComponentKismetLibrary and
make all the Blueprint exposed functions static.

Changed

e SenseGlove libraries have been updated to v2.7.1-965f90c with support for
Linux AArch64.

e The Virtual Hand and the Wrist Tracker debug gizmos (the intended use is only
for SenseGlove developers for really low-level stuff; thus won't affect the users
of the plugin at all) have been disabled and will be ignored due to an esoteric

bug in the settings systems which has been scheduled to be fixed in the future
releases.

Removed

e Removed the redundant SenseGloveCoreTypes module which causes all kinds
of packaging issues with certain versions of the engine.

Deprecated

e This is the last release to support Unreal Engine 4.27 and please keep in mind
that the current release is not obtainable through the Unreal Engine
Marketplace. The latest published version on the Marketplace for 4.27 is v1.3.1.
Per Epic's Marketplace policy regarding Code Plugins, we are only able to
distribute or update the SenseGlove plugin for the last 3 stable versions of

334 /365

The SenseGlove Unreal Engine Handbook

Unreal Engine. As a result, we won't be able to publish updates or bug fixes for
the older versions of the Engine except on rare occasions and only through our
official repository on Microsoft Azure DevOps.

[1.3.1] - 2023-04-28

Fixed

e Fix RUNUAT build issues caused by missing headers.
e Minor documentation fixes.

[1.3.0] - 2023-04-28

This release breaks ABI/API compatibility with the previous versions in addition to
breaking coordinates systems conversions between Unreal Engine and the
SenseGlove libraries.

Added

e Anew generic SenseGlove Debug module.
e Adebug virtual hand.

Fixed

e Fix the wrist tracker miscalculations for the Quest 2 controllers (other headsets
might need fixing as well, in that case, future releases will address that).

e Minor code improvement and fixes.

e Minor documentation fixes.

335/365

The SenseGlove Unreal Engine Handbook

Changed

Breaking API/ABI changes in the Settings and the main SenseGlove module due
to some settings refactoring.

Breaking changes in the SenseGlove/Unreal coordinates systems conversions
due to underlying changes in the SenseGlove Core Libraries.

SenseGlove libraries have been updated to v2.6.0-aac3d56.

[1.2.1] - 2023-03-30

Fixed

Fix RunUAT build issues with Android.

[1.2.0] - 2023-03-28

This release breaks ABI/API compatibility with the previous versions.

Added

Android / Oculus on-device glove calibration.

Introduced the animated Virtual Hand Model (as a set of virtual hand and wrist
tracker components and an actor) with in-editor animation availability.
Introduced SGPawn, SGPlayerController, SGGameModeBase, etc classes.
Added an internal SenseGloveCoreTypes module in order to share common
SenseGloveCore types between various modules.

Segregated Android binaries for NDK r21e (UE 4.27 and 5.0) and r25b (UE 5.1,
5.2).

Fully functional and stable Linux development support.

Fully functional and stable Unreal Engine 5.2 preview support has been added.

336 /365

The SenseGlove Unreal Engine Handbook

e Added a Plugin's settings manager and two new modules SenseGloveSettings
and SenseGloveSettingsKismet.

Changed

e SenseGlove libraries have been updated to the Linux-aware version: v2.5.0-
8069342.

e APl has changed to use degrees instead of radians.

e SGCoordinates utility class name has been changed to SGAngles and now the
plugin APl uses degrees in contrast of SenseGlove libraries by default.

e Migrate common nested array types into the SenseGloveTypes module from
the SenseGloveCore module.

Removed

e Removed a few thousand lines of archaic pre-public-release dead code.

e Dropped Android NDK r21b binaries used by the older engine versions.

e Purged the dead code for dropped engine versions by v1.1.1 (4.22, 4.23, 4.24,
4.25, and 4.26) that carried over to the current version.

e Removed redundant SGConnectimpl/SGPlatform.

e Removed redundant SGTypes/SGConnectTypes.

Known Issues

o Wrist Tracker's offsets are a bit off (e.g. on Quest 2), scheduled to be fixed in the
next patch release.

337 /365

The SenseGlove Unreal Engine Handbook

[1.1.1] - 2023-02-07

Added

¢ Initial support for the upcoming Unreal Engine 5.2.
e Add support for Android armeabi-v7a with neon, x86-64, and x86 builds in
addition to arm64-v8a.

Fixed

e Fix various Android build issues.
e Some minor fixes and improvements.

Changed

e Bump SenseGlove libraries to v2.1.2-95ec6e7.

[1.1.0] - 2023-02-03

Added

e Whitelist Android as a target platform.
e Introduce Android support.
e Add third-party library SGConnect for Android v1.1.0.

Fixed

e Fix Android build issues caused by the log module.

338/365

The SenseGlove Unreal Engine Handbook

Changed

e SGConnect and SGCore libraries have been updated to v2.1.1-0569c74.

Removed

e Removed the enum utils class due to ANY_PACKAGE deprecation warnings in
Unreal Engine 5.1.

e Support for older versions of the Engine (namely, 4.22, 4.23, 4.24, 4.25, and 4.26)
has been dropped.

[1.0.4] - 2022-12-02

This is a minor release focusing mostly on adherence to the Unreal Engine
Marketplace Guidelines based on the feedback from Epic Games.

Added

e Added support for MSVC 2017

Changed

e Updated SenseGlove libraries (SGCore/SGConnect) to v2.0.4.

[1.0.3] - 2022-11-29

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

339/365

The SenseGlove Unreal Engine Handbook

Changed

e Adjust Config/FilterPlugin.ini in order to conform to Epic's Market Place
Guidelines.

[1.0.2] - 2022-11-27

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

Added

e Added the newly acquired Unreal Engine Market Place Offer ID to the .uplugin
file.

e List the dotfiles inside the FilterPlugin.ini file as well.

e Add the copyright notice to the source files missing it.

e Add the SenseGlove SDK license to the third-party license file.

Fixed

e Fix the readme typos and errors.
e Minor fixes in the changelog for previous releases.

[1.0.1] - 2022-11-25

Changed

e Exposed SenseGloveTypes as a public dependency in SenseGloveConnect and
SenseGloveCore modules, so that the C++ users of the APl don't need to
explicitly add it as a dependency.

340/ 365

The SenseGlove Unreal Engine Handbook

e Cleaned up the redundant headers/modules dependencies from SGCore
headers.

Fixed

e Fix RUnUAT build issues prior to Epic Store submission.

[1.0.0] - 2022-11-24

Added

e Initial public release of the SenseGlove haptic API for Unreal Engine with
support for Microsoft Windows and GNU/Linux.

341/ 365

The SenseGlove Unreal Engine Handbook

342 /365

The SenseGlove Unreal Engine Handbook

Directory Structure

— Confiig

— Documentation (this will be generated by running the <code>make</code>

command -inside the Handbook directory)

— Handbook (this 1is the mdBook source code, used to generate the

Documentation folder and not distributed to [Fab](https://www.fab.com/))

—— Resources

— Source (various plug-in modules)

— SenseGlove (the UE-specific high-level API)
— SenseGloveAndroid (the Android-specific module)

— SenseGloveBackend (responsible for -initialization and

deinitialization of the backend libraries)

from the

— SenseGloveBackendKismet (exposes Blueprint-specific functionality
SenseGloveBackend module)

— SenseGloveBuildHacks (uses Exceptions and RTTI, +internally used

for compiler-specific build hacks)

— SenseGloveConnect (exposes part of the SGConnect low-level API to

C++)

— SenseGloveConnectImpl (uses Exceptions and RTTI, intended for
internal use only)

— SenseGloveConnectKismet (SGConnect functionality exposed to
Blueprint)

— SenseGloveCore (exposes part of the SGCoreCpp low-level API to
C++)

— SenseGloveCoreImpl (uses Exceptions and RTTI, +intended for
internal use only)

— SenseGloveCoreKismet (SGCoreCpp functionality exposed to

343 /365

The SenseGlove Unreal Engine Handbook

Blueprint)
— SenseGloveDebug (a utility debug module)

— SenseGloveDebugKismet (exposes Blueprint-specific functionality
from the SenseGloveDebug module)

—— SenseGloveEditor (the Editor module)

— SenseGlovelInterop (internally used for +interoperability between
RTTI disabled/enabled modules)

— SenseGloveKismet (exposes Blueprint-specific functionality from
the SenseGlove module)

— SenseGlovelLog (the internal log module)
— SenseGloveSettings (the plugin's settings manager)

— SenseGloveSettingsKismet (exposes Blueprint-specific
functionality from the SenseGloveSettings module)

— SenseGloveTracking (provides XR_EXT_hand_tracking support, HMD
auto-detection, and SenseGlove device tracking)

— SenseGloveTrackingKismet (exposes Blueprint-specific
functionality from the SenseGloveTracking module)

— SenseGloveTypes (exposes various enums from the backend librariies
and also types from the SenseGlove module)

— SenseGloveUtils (the [internal utility module)

— ThirdParty (3rd-party dependencies)
— android (.jar file Java libraries for Android)
— 1include (header files)
— boost
— SenseGlove
Connect (SGConnect headers)

Core (SGCoreCpp headers)

— serial

344 / 365

The SenseGlove Unreal Engine Handbook

L—— lib (platform-specific pre-built binary dependencies)

5.1+)

Linux architecture)

Linux architecture)

Linux architecture)

— android

L—— r25b (Android NDK r25b dependencies for UE

— arm64 (64-bit ARM variant of Android)
— debug

— release

L— x64 (64-bit x86-64 variant of Android)

— debug

— release
— linux
— v21 (UE 5.2 Linux dependencies)

— aarch64 (dependencies targeting AArché64

debug

release

— x86-64 (dependencies targeting x86-64

debug

release

— v22 (UE 5.3 and 5.4 Linux dependencies)

— aarch64 (dependencies targeting AArch64

debug

release

—— x86-64 (dependencies targeting x86-64
345 / 365

The SenseGlove Unreal Engine Handbook

Linux architecture)
debug

release

— win64

— msvcl42 (Microsoft Visual Studio 2019
dependencies)

debug

release

— msvcl43 (Microsoft Visual Studio 2022
dependencies)

debug

release

346/ 365

The SenseGlove Unreal Engine Handbook

Extra Resources

There are various resources available for older versions of the SenseGlove Unreal
Engine Plugin prior to v2.1.x that might still be partially relevant. These include
example projects, demo scenes, and tutorials. Plans are underway to provide new
example projects, demo scenes, and tutorials for the latest release. In the meantime,
the outdated resources can still be beneficial

Examples and Demo Projects

e A basic OpenXR-compatible Blueprint demo demonstrating basic functionality
such as grab/release, touch with buzz and force-feedback, etc (compatible with
versions v2.1.0+).

e Abasic Blueprint demo demonstrating basic functionality such as grab/release,
touch with buzz and force-feedback, etc (compatible with versions >=v1.4.x and
<=v2.0.x).

e Example C++ API Project (only compatible with early v1.x.x releases)

e Example Blueprint API Project (only compatible with early v1.x.x releases)

Tutorials

e Finding out your SenseGlove plugin version

e Plugin installation guide for Microsoft Windows

o C++ & Blueprint examples for Microsoft Windows

e Plugin and examples installation guide for GNU/Linux

e How to connect to Nova gloves on GNU/Linux using Blueman Bluetooth
Manager

e How to connect to Nova gloves on GNU/Linux using command-line

e The basic C++ and Blueprint APl usage

e How to setup the virtual hand model & the SenseGlove pawn

e How to deploy to Oculus Quest 2 and Android

347 /365

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://youtu.be/iF0JU2kpNhw
https://youtu.be/QqWeRHNceqY
https://youtu.be/qRaNOc3OHqU
https://youtu.be/1T7LAGp3e6I
https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow
https://youtu.be/Swkk_KmXwq8
https://youtu.be/9ICAH2ZUvVk
https://youtu.be/_PEppB_yPCU
https://youtu.be/zU8Nf4ssOO0

The SenseGlove Unreal Engine Handbook

Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)
Setting up VIVE Pro & VIVE Trackers in Unreal Engine

Setting up VIVE Focus 3 & VIVE Wrist Trackers in Unreal Engine
SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

SGBasicDemo v2: upgrading your projects to the SenseGlove Unreal Engine
Plugin v2.0.0

348 /365

https://youtu.be/jN4VcfXVrTA
https://youtu.be/jvFDNdq_4xQ
https://youtu.be/SGmQevkzsY4
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/VbWfoep-Hsg
https://youtu.be/VbWfoep-Hsg

The SenseGlove Unreal Engine Handbook

SenseGlove Unreal Engine Plugin
License

The SenseGlove Unreal Engine Plugin is licensed under the terms of the MIT License.
Below is the MIT License:

MIT License
Copyright (c) 2020 - 2024 SenseGlove

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, 1including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software -s
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included 1in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components. For a list of these libraries and their own
respective open-source licenses take a look at the third-party licenses, please.

349/ 365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/third-party.html

The SenseGlove Unreal Engine Handbook

SenseGlove Unreal Engine Handbook
License

The SenseGlove Unreal Engine Handbook is licensed under the terms of the CC BY
(Creative Commons Attribution) License. Below is the CC BY License:

350/ 365

The SenseGlove Unreal Engine Handbook

Attribution 4.0 International

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes +its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material 1in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This 1includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If

the licensor's permission 1is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other

351 /365

The SenseGlove Unreal Engine Handbook

rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:

wiki.creativecommons.org/Considerations_for_licensees

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be 1interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights 1in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 ——- Definitions.

. Adapted Material means material subject to Copyright and Similar

Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material 1is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.

Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material 1in
accordance with the terms and conditions of this Public License.

Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright

352 /365

The SenseGlove Unreal Engine Handbook

Treaty adopted on December 20, 1996, and/or similar -international
agreements.

Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.

Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.

Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.

Licensor means the individual(s) or entity(ies) granting rights
under this Public License.

. Share means to provide material to the public by any means or

process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.

. Sui Generis Database Rights means rights other than copyright

resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere 1in the world.

k. You means the individual or entity exercising the Licensed Rights

under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

a.

License grant.

1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or
in part; and
353 /365

The SenseGlove Unreal Engine Handbook

b. produce, reproduce, and Share Adapted Mater-dial.

2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section
6(a).

4, Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights 1in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.

b. No downstream restrictions. You may not offer or -impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material 1if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided 1in Section 3(a) (1) (A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not
354 / 365

The SenseGlove Unreal Engine Handbook

licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this
Public License.

3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified
form), You must:

a. retain the following if it is supplied by the Licensor
with the Licensed Material:

i. didentification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of
warranties;

v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;

b. indicate if You modified the Licensed Material and
355/ 365

The SenseGlove Unreal Engine Handbook
retain an 1indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this

Public License, and include the text of, or the URI or
hyperlink to, this Public License.

. You may satisfy the conditions in Section 3(a) (1) in any

reasonable manner based on the medium, means, and context 1in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that 1includes the required
information.

If requested by the Licensor, You must remove any of the
information required by Section 3(a) (1) (A) to the extent
reasonably practicable.

If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

a.

C.

for the avoidance of doubt, Section 2(a) (1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;

. if You 1dinclude all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

a.

UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS

356 /365

The SenseGlove Unreal Engine Handbook

AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE

TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

. The disclaimer of warranties and limitation of liability provided

above shall be -interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.

Section 6 —— Term and Termination.

a.

b.

This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.

Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:

1. automatically as of the date the violation 1is cured, provided
it is cured within 30 days of Your discovery of the
violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.

For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so

357 /365

The SenseGlove Unreal Engine Handbook

will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.

Section 7 —— Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.

c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.

d. Nothing in this Public License constitutes or may be -interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, 1including from the legal
processes of any jurisdiction or authority.

Creative Commons is not a party to its public

licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those -{instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CCO Public
Domain Dedication. Except for the limited purpose of +indicating that

358/ 365

The SenseGlove Unreal Engine Handbook

material 1is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without 1its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

359 /365

The SenseGlove Unreal Engine Handbook

Third Party Licenses

Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components.

The following third-party software are used and shipped with the SenseGlove Unreal
Engine Plugin:

e The SenseGlove SDK (a.k.a. SenseGlove Backend Libraries, or SenseGlove Core
Libraries)

e The Boost C++ Libraries

e The Serial Communication Library

For more information consult their own respective open-source licenses, please.

360 /365

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-unreal-engine-plugin.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/boost-cpp-libraries.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/serial-communication-library.html

The SenseGlove Unreal Engine Handbook

SenseGlove SDK License

SENSEGLOVE SDK LICENSE

Purchase of the Product does not entitle you to ownership or a license to any
software generated by SenseGlove for use with the Product (the “Software”).
To the extent that SenseGlove, in +its sole discretion, grants you access to
any

such Software, the Software 1is licensed by us or by the relevant
licensor/owner

subject to the relevant end-user license agreement or other license terms
included with the Product and/or on the SenseGlove Websites including the
Github

page of SenseGlove (the “License Terms*).

Specifically, SenseGlove shall have sole discretion to determine and change
the

availability, nature, features, content, versioning of any Software that -t
makes available to you, for download through the the Github page of
SenseGlove

or otherwise (including the SenseGlove software developer kit (“SDK”)).
Purchase of a Product does not entitle you to access to any specific
features,

content or version of the SDK, including and especially versions of the SDK
that

have not yet been made available to the public. SenseGlove will have no
obligation to provide any updates or upgrades to any Software it makes
available

to you, but in the event that it does, such updates, upgrades and any
documentation will be subject to the License Terms available at
https://www.senseglove.com/solutions/.

Except to the extent expressly provided by us 1in writing or under the License
Terms, the Software is provided “AS IS” without any warranties, terms or
conditions as to quality, fitness for purpose, non-infringement, performance
or

correspondence with description and we do not offer any warranties or
guarantees

in relation to the Software +installation, configuration or error/defect
correction.

361 /365

The SenseGlove Unreal Engine Handbook

Boost C++ Libraries License

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software'") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices 1in the Software and this entire statement, dincluding
the above license grant, this restriction and the following disclaimer,
must be included 1in all copies of the Software, in whole or 1in part, and
all derivative works of the Software, unless such copies or derivative
works are solely 1in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

362 /365

The SenseGlove Unreal Engine Handbook

Serial Communication Library License

Copyright (c) 2012 William Woodall, John Harrison

Permission is hereby granted, free of charge, to any person obtaining a copy
of

this software and associated documentation files (the "Software"), to deal 1in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of

the Software, and to permit persons to whom the Software is furnished to do
so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included 1in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

363 /365

The SenseGlove Unreal Engine Handbook

Build Information

The SenseGlove Unreal Engine Handbook

Han.d-book 29
Revision
Handbook
Revision URL https://unreal.docs.senseglove.com/2.2
Handbook PDF https://unreal.docs.senseglove.com/2.2/the-senseglove-
URL unreal-engine-handbook-2.2.pdf
Git Branch HEAD
Git Tag v2.2.2
Git Commit 1cbe24a4
Git Commits
: 0
Since Tag
Git Tree State clean
Git Is Shallow
no

Clone
Git Latest V222
Remote Tag
Git Version v2.2.2
Git Version

. 2
Major
Git Version 5
Minor
Git Version 5
Patch
Plugin Version v2.2.2
Plugin Version

. 2
Major
Plugin Version 5

Minor

364 /365

https://unreal.docs.senseglove.com/2.2
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf
https://unreal.docs.senseglove.com/2.2/the-senseglove-unreal-engine-handbook-2.2.pdf

The SenseGlove Unreal Engine Handbook

The SenseGlove Unreal Engine Handbook

Plugin Version)

Patch

Build Host mamadou-legion

Build Time Fri Nov 08, 2024 12:27 CET +0100

365 /365

	Introduction
	Overview
	🚀 Getting Started
	⚙️ Plugin Configuration
	💡 Miscellaneous
	🛠️ Advanced Topics
	🔌 Low-Level API
	📑 Appendix

	Plugin Installation
	Video Tutorials

	Plugin Installation via the Epic Games Launcher
	Plugin Installation via Microsoft Azure DevOps Repositories
	Download a Specific Version
	Download a Specific Version for a Specifc Unreal Engine Version
	Download the Bleeding-edge Development Branch
	Installation
	Engine-level installation
	Per-project installation
	Linux Build Instructions

	Enabling The SenseGlove Unreal Engine Plugin and Veirfying the Plugin Version
	Video Tutorial

	SenseCom
	SenseCom on GNU/Linux
	Connect to Nova gloves using Blueman Bluetooth Manager
	Video Tutorial

	Connect to Nova gloves using Command-line
	Scripts to Easily Connect and Disconnect from a Glove
	Example Scripts for a Left-Handed Glove

	Video Tutorial

	SenseCom on Microsoft Windows
	Enabling XR_EXT_hand_tracking OpenXR extension on VR Headsets
	Setting Up the SenseGlove Default Classes
	Setting Up SGGameModeBase
	Extending SGGameModeBase

	Setting Up SGPawn
	Extending SGPawn
	Customizing SGPawn

	Setting Up SGPlayerController
	Extending SGPlayerController

	Setting Up SGGameInstance
	Extending SGGameInstance

	Setting Up SGGameUserSettings
	Extending SGGameUserSettings

	Setting Up the Virtual Hand Meshes
	Compatible Virtual Hand Meshes
	Exporting the Virtual Hand Meshes from the VRTemplate
	Importing the Virtual Hand Meshes into Your Own Project
	Setting up the Rigid Bodies
	Setting up the SenseGlove Grab and Touch Sockets
	Accessing the SenseGlove Sockets Editor
	Adding the SenseGlove Sockets
	Clearing All Existing Sockets

	Configuring the SGPawn and Plugin Virtual Hand Mesh Settings
	SGPawn Configuration
	Plugin Virtual Hand Mesh Settings

	Setting Up the Wrist Tracking Hardware
	Setting up the Grab/Release System
	Video Tutorials

	Setting up the Touch System
	Video Tutorials

	The Plugin Settings
	Settings Categories

	The Plugin Initialization Settings
	bValidateIfDefaultClassesAreSGCompliant

	The Game User Settings
	The Hardware-benchmarking Settings
	WorkScale
	CPUMultiplier
	GPUMultiplier

	The Tracking Settings
	bFallbackToHandTrackingIfNoGloveDetected
	Glove Tracking Settings
	Hand Tracking Settings
	HMD Tracking Settings
	Wrist Tracking Settings

	The Glove-tracking Settings
	GloveConnectivityCheckInterval

	The Hand-tracking Settings
	bUseMoreSpecificMotionSourceNames
	bSupportLegacyControllerMotionSources

	The HMD-tracking Settings
	ViveHMDDetectionPriority

	The Wrist-tracking Settings
	TrackingHardware
	TrackingHardwareLocationOffsetLeftHand
	TrackingHardwareLocationOffsetRightHand
	TrackingHardwareRotationOffsetLeftHand
	TrackingHardwareRotationOffsetRightHand
	LeftHandMotionSource
	RightHandMotionSource
	DebuggingSettings
	Overriding the Wrist-tracking Settings from the Wrist Tracker Component

	The Wrist-tracking Debugging Settings
	bDrawDebugWristTracker
	DebugWristTrackerSettings

	The Virtual Hand Settings
	bVisibleWhenHandDataUnavailable
	Animation Settings
	Debugging Settings
	Grab Settings
	Haptics Settings
	Mesh Settings
	Touch Settings
	Overriding the Virtual Hand Settings from the Wrist Tracker Component

	The Virtual Hand Animation Settings
	AnimationBoneRotationCorrectionOffset
	bShouldAnimationApplyBoneLocation

	The Virtual Hand Debugging Settings
	bDrawDebugVirtualHand
	DrawingMode
	DebugCubicHandSettings
	DebugGizmoHandSettings

	The Virtual Hand Grab Settings
	GrabAttachPointSocketName
	GrabAttachPointSocketTransform
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName

	The Virtual Hand Haptics Settings
	bAutoStopAllHapticsOnEndPlay

	The Virtual Hand Mesh Settings
	LeftHandReferenceMesh
	RightHandReferenceMesh
	DistalPhalangesLengthSettings
	RootBoneRotationCorrection
	LeftHandDefaultReferenceBoneTransforms
	RightHandDefaultReferenceBoneTransforms
	LeftHandBoneNames
	RightHandBoneNames
	DefaultLeftHandMeshPath
	DefaultLeftHandMeshPathOnly
	DefaultRightHandMeshPath
	DefaultRightHandMeshPathOnly

	The Virtual Hand Touch Settings
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName
	RingColliderSocketName
	PinkyColliderSocketName

	Overriding The Plugin Settings
	The SenseGlove Virtual Hand Component
	The SenseGlove Wrist Tracker Component

	The SenseGlove Console Commands
	SGGameUserSettings Console Commands
	SG_GetEngineScalabilitySettings
	SG_SetEngineScalabilitySettings

	Deploying to Android (Standalone)
	Upgrade Guide
	Optimizing Your Project for Higher FPS
	Meta Quest Link Advanced Graphics Preferences
	Game User Settings and Engine Scalability Settings
	Optimizing Unreal Projects for Mobile
	General Rendering Settings
	Texture Settings
	Lighting Settings
	Post-Processing Settings
	Materials and Shaders
	Level of Detail (LOD) Settings
	Engine Scalability Settings
	Physics and Collision
	Audio Settings
	Rendering API
	Culling

	Safe and Reliable Glove Access in Blueprint
	OpenXR
	Consuming FXRHandTrackingState
	FXRHandTrackingState in Unreal Engine
	Structure Members of FXRHandTrackingState
	Organization of FXRHandTrackingState
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRHandTrackingState in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRHandTrackingState in C++
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData
	FXRMotionControllerData in Unreal Engine
	Structure Members of FXRMotionControllerData
	Organization of FXRMotionControllerData
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRMotionControllerData in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData in C++
	Drawing and Animating Virtual Hands

	Low-level Blueprint API
	Low-level C++ API
	Platform Support Matrix
	Planned Features Completion Status
	Implemented as of v2.2.x
	Upcoming features planned for the v2.3.x release
	Planned features long-term

	Changelog
	[2.2.2] - 2024-11-08

	Fixed
	[2.2.1] - 2024-10-23
	Documentation

	[2.2.0] - 2024-10-22
	Added
	Fixed
	Changed
	Documentation

	[2.1.4] - 2024-10-22
	Documentation

	[2.1.3] - 2024-10-11
	Added
	Fixed
	Changed

	[2.1.2] - 2024-09-02
	Fixed

	[2.1.1] - 2024-08-18
	Fixed
	Removed

	[2.1.0] - 2024-08-16
	Added
	Fixed
	Changed
	Removed
	Known Issues

	[2.0.8] - 2024-07-15
	Fixed

	[2.0.7] - 2024-05-29
	Fixed

	[2.0.6] - 2024-05-29
	Removed
	Fixed

	[2.0.5] - 2024-05-22
	Fixed

	[2.0.4] - 2024-05-17
	Fixed

	[2.0.3] - 2024-05-15
	Fixed
	Removed

	[2.0.2] - 2024-04-25
	Added
	Changed

	[2.0.1] - 2024-04-15
	Fixed
	Changed

	[2.0.0] - 2024-03-22
	Added
	Fixed
	Changed
	Removed

	[1.9.8] - 2024-03-12
	Fixed
	Changed

	[1.9.7] - 2024-02-18
	Fixed

	[1.9.6] - 2024-02-14
	Fixed

	[1.9.5] - 2024-02-09
	Fixed

	[1.9.4] - 2024-02-08
	Fixed

	[1.9.3] - 2024-02-03
	Fixed

	[1.9.2] - 2023-11-03
	Added
	Fixed

	[1.9.1] - 2023-10-11
	Fixed

	[1.9.0] - 2023-10-10
	Changed
	Fixed

	[1.8.0] - 2023-10-10
	Added
	Fixed

	[1.7.0] - 2023-09-14
	Added
	Changed
	Fixed

	[1.6.1] - 2023-08-14
	Fixed

	[1.6.0] - 2023-08-14
	Added
	Fixed
	Changed

	[1.5.3] - 2023-07-19
	Fixed
	Changed

	[1.5.2] - 2023-07-19
	Fixed

	[1.5.1] - 2023-07-13
	Fixed

	[1.5.0] - 2023-06-16
	Added
	Fixed
	Changed
	Removed

	[1.4.3] - 2023-06-01
	Fixed

	[1.4.2] - 2023-06-01
	Fixed

	[1.4.1] - 2023-05-29
	Fixed
	Removed

	[1.4.0] - 2023-05-19
	Added
	Fixed
	Changed
	Removed
	Deprecated

	[1.3.1] - 2023-04-28
	Fixed

	[1.3.0] - 2023-04-28
	Added
	Fixed
	Changed

	[1.2.1] - 2023-03-30
	Fixed

	[1.2.0] - 2023-03-28
	Added
	Changed
	Removed
	Known Issues

	[1.1.1] - 2023-02-07
	Added
	Fixed
	Changed

	[1.1.0] - 2023-02-03
	Added
	Fixed
	Changed
	Removed

	[1.0.4] - 2022-12-02
	Added
	Changed

	[1.0.3] - 2022-11-29
	Changed

	[1.0.2] - 2022-11-27
	Added
	Fixed

	[1.0.1] - 2022-11-25
	Changed
	Fixed

	[1.0.0] - 2022-11-24
	Added

	Directory Structure
	Extra Resources
	Examples and Demo Projects
	Tutorials

	SenseGlove Unreal Engine Plugin License
	SenseGlove Unreal Engine Handbook License
	Third Party Licenses
	SenseGlove SDK License
	Boost C++ Libraries License
	Serial Communication Library License
	Build Information

