The SenseGlove Unreal Engine Handbook

Introduction

Welcome to the documentation for the SenseGlove Unreal Engine Plugin (a.k.a. The
SenseGlove Unreal Handbook)!

This handbook is an ongoing effort and a work in progress to document the
SenseGlove Unreal Engine Plugin. Feel free to visit this handbook on a regular basis.

Due to superior formatting and frequent updates, we recommend the online version

of the handbook; nonetheless, it's also available in PDF and ePub formats as well.
Tip

Feel free to check out the SenseGlove Unreal Engine Plugin landing page on Fab

as well.

1/461

https://unreal.docs.senseglove.com/2.7
https://unreal.docs.senseglove.com/2.7
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.pdf
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.epub
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

Overview

To help you navigate the SenseGlove Unreal Engine Handbook, we have organized
the content into several key sections. This structured layout aims to simplify your
journey through the SenseGlove Unreal Engine Plugin, providing clear and detailed
guidance at every step.

4’ Getting Started

This section covers the basics of the SenseGlove Unreal Engine Plugin:

e Installation
o Viathe Epic Games Launcher
o Via Microsoft Azure DevOps Repositories
e Enabling and Verifying the Plugin Version
e SenseCom
o Bluetooth Low Energy
= SenseCom on Android
= SenseCom on GNU/Linux
= SenseCom on Microsoft Windows
o Bluetooth Serial
= SenseCom on Android
= SenseCom on GNU/Linux
m Connect to Nova gloves using Blueman Bluetooth Manager
= Connect to Nova gloves using Command-line
= SenseCom on Microsoft Windows
e Enabling XR_EXT_hand_tracking on VR Headsets
o PCVR Mode
o Standalone Mode
o Third-Party Tutorials
e Setup SenseGlove Default Classes
o SGPawn
o SGPlayerController

217461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/android.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/gnu-linux.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/microsoft-windows.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/android.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/command-line.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/microsoft-windows.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html

The SenseGlove Unreal Engine Handbook

o SGGameModeBase

o SGGamelnstance

o SGGameUserSettings
Setup the Virtual Hand Meshes
Setup the Wrist Tracking Hardware
Setup the Grab/Release System
Setup the Touch System

%* Plugin Configuration

This section provides detailed information on configuring the plugin:

e Plugin Settings
o Initialization
o Game User Settings
= Hardware-benchmarking
o Tracking
Glove-tracking
Hand-tracking
HMD-tracking
Wrist-tracking
= Debugging
o Virtual Hand
= Animation
= Debugging
= Grab
= Haptics
= Mesh
= Touch
e Overriding Settings

3/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-grab-release-system/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-touch-system/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/hardware-benchmarking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/overriding-settings/

The SenseGlove Unreal Engine Handbook

¥ Miscellaneous

Toipcs that do not fall under any specific category:

SenseGlove Console Commands
Deploying to Android (Standalone)
o Third-Party Tutorials
Upgrade Guide
Optimizing for Higher FPS
o Third-Party Tutorials

X Advanced Topics

For users familiar with the basics, this section explores advanced features of the
plugin:

e Safe Glove Access in Blueprint
e OpenXR
o Consuming FXRHandTrackingState
= Blueprint
m C++
o Consuming FXRMotionControllerData
= Blueprint
m C++
o Third-Party Integrations
o Third-Party Tutorials

4, Low-Level API

This section delves into the SenseGlove low-level API:;

e Low-Level Blueprint API
e Low-Level C++ API

4/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/upgrade-guide/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/safe-glove-access-blueprint/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html

The SenseGlove Unreal Engine Handbook

Appendix

The appendix contains various extra useful information:

e Platform Support Matrix

e Planned Features Completion Status
e Changelog

e Directory Structure

e Extra Resources

@

— License

e SenseGlove Unreal Engine Plugin License
e SenseGlove Unreal Engine Handbook License
e Third-Party Licenses

(¢]

O O O O

(o}

SenseGlove SDK License

SGBLE and SGBLExx Rust Dependencies Licenses
Boost C++ Libraries License

{fmt} Formatting Library License

Loguru Logging Library License

Serial Communication Library License

5/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/planned-features-completion-status.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/directory-structure.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/extra-resources.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-unreal-engine-plugin.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-unreal-engine-handbook.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/third-party.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/sgble-sgblexx-rust-dependencies.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/boost-cpp-libraries.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/fmt-formatting-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/loguru-loggin-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/serial-communication-library.html

The SenseGlove Unreal Engine Handbook

Plugin Installation

The SenseGlove Unreal Engine Plugin could be installed using various methods:

e Via the Epic Games Launcher by navigating to the SenseGlove Unreal Engine

Plugin landing page on Fab.
e Via the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps repository.

In the following chapters, we discover each of those methods:

¢ Installation via the Epic Games Launcher
e Installation via Microsoft Azure DevOps Repositories

Video Tutorials

We also have older videos demonstrating both installation methods on Microsoft
Windows and GNU Linux in more detail.

e Plugin installation guide for Microsoft Windows:

6/461

https://store.epicgames.com/en-US/download
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
https://youtu.be/QqWeRHNceqY

The SenseGlove Unreal Engine Handbook

e Plugin and examples installation guide for GNU/Linux:

71461

https://youtu.be/1T7LAGp3e6I

The SenseGlove Unreal Engine Handbook

Plugin Installation via the Epic Games
Launcher

Before beginning the plugin installation via the Epic Games Launcher, ensure you
have signed into your Epic Games account on the Epic Games Launcher and that you
have a supported version of Unreal Engine installed. Supported engine versions can
be found in the Platform Support Matrix.

1. Run the Epic Games Launcher.

Epic Games F R] Launch
Unreal Engine 5.4.4

Unreal Engine 5.4 Released

Unreal Engine

Ruins of the Cloud Temple

Game Animation Sample Project Inside Unreal | Demoing 5.4 Weekly Spotlights
Released! Animation & Rigging Updates

ject includes 500+ AAA quality animations to help yoL This week we chat ith some of the team behind the l % &

2. Navigate to the Fab tab and click Start exploring button which in turn opens
your default web browser pointing to the Fab home page.

8/461

https://store.epicgames.com/en-US/download
https://store.epicgames.com/en-US/download
https://dev.epicgames.com/documentation/en-us/unreal-engine/installing-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://www.fab.com/

The SenseGlove Unreal Engine Handbook

" Launch
Epic Gam ews v 0 Re e
@ pic Games Unreal Engine 5.4.4 n

Unreal Engine

Everything you need
to build new worlds

Unreal Engine Marketplace is now Fab - a new marketplace
from Epic Games giving all digital content creators a single
destination to discover, share, buy and sell digital assets.

Start exploring (7

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation,
analyze site usage, and personalize content. Cookies Settings

Reject All

NuLL3rr0 Accept All Cookies

. On the Fab home page, enter the term SenseGlove in the search box and press

Enter. Alternatively, you can go directly to the SenseGlove Unreal Engine Plugin
landing page on Fab directly instead of taking the above two steps.

x +

o

% https://www.fab.com e > b B "oak

@ \z 7.4-':) Discover My Library Publish CQ SenseGlove| ") Q @ N.

Search "SenseGlove" in a Game Engine irs

an Town
R Unity

FEATURED CONTENT

Free Content

Grab the latest October free content while you can G UEFN

Explore now

@ Unreal Engine

ONTENT

https://www.fab.com/
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

4. Click on the senseGlove Unreal Engine Plugin in the search results to navigate
to its dedicated page.

& Search results for "SenseGlove’ X +

< C [0 % hitps//www.fab.com/search?q=SenseGlove

@ 4 ":,' Discover My Library Publish Q. SenseGlove

Products Creators

2D Assets 3D Models Animations Atlases Brushes Decals Education & Tutorials

Material & Textures Smart Assets Tools & Plugins VFX

Sort by: Relevance v

The SenseGlove Unreal Engine ...
Tools & Plugins

(] d

5. On the SenseGlove Unreal Engine Plugin landing page on Fab click the Download
button.

10/ 461

https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099

The SenseGlove Unreal Engine Handbook

& The SenseGlove Unreal Engine X + [m]

< C [%= https//www.fab.com/listings/62bcdd2a-0bb1-434-b7b8-c5e7c9313... & B "2 Ok evn &

@ 7 Discover My Library Publish Q_ Search E’ @ N.

A SenseGlove

_ The SenseGlove Unreal
Hold the virtual like : Engine Plugin

eny Tools & Plugins > Procedural Systems
it's real

Interact in VR naturally: get to feel the size, stiffness and resistance of virtual

No rating yet - Rate product

objects. Unlike controllers, SenseGlove allows you to hold, push, touch,

connect and squeeze the virtual like it is real

© You own this item

Download View in My Library

Included formats

(.

6. If this is your first download from Fab, you will need to agree to the Fab End
User License Agreement (EULA) before proceeding.

Last updated: October 1st, 2024
Fab End User License Agreement

This Fab End User License Agreement (*Agreement") applies to your use of certain digital assets
(“Content") made available through Epic's online digital asset marketplace (the "Epic Marketplace"). This
Agreement is a legal agreement between you and the Content Licensor. By clicking to indicate your
acceptance of this Agreement you are agreeing to be bound by the terms of this Agreement.

When we say we are referring to the Epic entity for your region as defined in Section 9. When we
say "you," "your," or “"yourself," we mean you as an individual or the legal entity exercising rights under
this Agreement through you. When we say "Content Licensor," "we" or "us," we are referring to the party
granting you a limited license to the Content. Epic may not be the Content Licensor. See Section 1(b) for
how to identify the Content Licensor.

PLEASE READ THIS AGREEMENT CAREFULLY. IT CONTAINS A CLASS-ACTION WAIVER PROVISION. IF

YOU ACCEPT THIS AGREEMENT, YOU AND EPIC AGREE TO RESOLVE DISPUTES ONLY IN YOUR

INDIVIDUAL CAPACITIES AND NOT AS PART OF A CLASS ACTION (SEE SECTION 15(b)). YOU HAVE A

TIME-LIMITED RIGHT TO OPT OUT OF THIS WAIVER. BY AGREEING TO THE TERMS OF THIS

AGREEMENT, YOU ARE ALSO AGREEING TO CONTRACTUAL TERMS THAT WILL LIMIT SOME OF YOUR

LEGAL RIGHTS, INCLUDING A JURY WAIVER, A DISCLAIMER OF WARRANTY, AN EXCLUSION OF

CCERTAIN KINDS OF DAMAGES, AND A LIMITATION OF LIABILITY. 1ded formats

Buying Content Through an Epic Marketplace
1. MARKETPLACE CONTENT

Epic's Role in the Epic Marketplace. Epic and its affiliates or subsidiaries operate the Epic Marketplace
and may allow you to add Content to your library, either by purchasing the Content or by adding it to your
library at no charge (each time you add Content to your library, a "Transaction"). Your use of the Epic
Marketplace is subject to b and any supplemental terms
related to the Epic Marketplace that you have agreed to. This Agreement does not supersede, amend or
otherwise affect other agreements you may have with Epic.

b.Receiving a License to Content. When you complete a Transaction for Content, you are granted a
D I have read and agree to the Fab End User License Agreement*

Cancel

11 /461

The SenseGlove Unreal Engine Handbook

7. After clicking Download, a pop-up will notify you that the plugin is available in
your Vault in the Epic Games Launcher, or the Fab UE5 Plugin.

Note
According to the Fab launch announcement:

The Fab integration in UEFN is undergoing maintenance and will be back online
shortly, and the Fab integration in the Unreal Engine 5 Editor is coming soon.

& The SenseGlove Unreal Engine X +

< C [N % https//www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313.. |2 | ®°

Download

The SenseGlove Unreal Engine Plugin

Tools & Plugins
Standard License [

Included formats

0 Unreal Engine files are available in your Vault in the Epic
Games Launcher, or the Fab UES Plugin.

8. Go back to the Epic Games Launcher, navigate to the Library tab, and in the
Fab Library section, clickthe Refresh Fab items button.

12 /461

https://www.unrealengine.com/en-US/blog/fab-epics-new-unified-content-marketplace-launches-today

The SenseGlove Unreal Engine Handbook

A] , Launch
Epic G a [s] vinmotion RealityCapture
@ P EENEE LB . L Unreal Engine 5.4.4 '

ENGINE VERSIONS 3

GITHUB SOURCE RELEASE NOTES © 2017 GiB

5,87 52| 5.4.4 5.5.0

HEE
Lo |- Cionen |- Cioncn |- CLoncn |-

Installed Plugi

Library

MY PROJECTS

No user projects found

Fab Library

Refresh the Fab items

Unreal Engine assets from your Fab Library. To see your complete Fab Library visit Fab.com

Filter by: Category v © 0,08

"ArchViz" Explorer [Blueprint] Array Helper [Blueprint] File Helper

NuLL3rr0Or m Create Project n [Install to Engine n Install to Engine '

9. Once the Fab library is refreshed and synchronized, use the Vault search box to

find the SenseGlove Unreal Engine Plugin. Clickthe Install to Engine button.

-0 X

; N N) Launch
Lib vinmotion RealityCapture
ibrary Al ptur Unreal Engine 5.4.4 '

GITHUB SOURCE RELEASE NOTES © 2017 GiB

55 72 57 4. 550

HEE
oo |- Cioven |-

stalled Plugi
Unreal Engine

MY PROJECTS

No user projects found

Fab Library

Unreal Engine assets from your Fab Library. To see your complete Fab Library visit Fab.com

Filter by: Category v © 0,08 ¥ SenseGlove|

The SenseGlove Unreal Engin

¥ cremmn

13 /461

The SenseGlove Unreal Engine Handbook

10. You'll be prompted to choose a compatible engine version. Select your desired
engine version from the list, then click Install.

Unreal Engine
MY PROJECTS

Install Plugin

Slot to add plugin to: 5.4+

Fab Library

Category

ove Unreal Engin

11. The Epic Games Launcher will show the plugin's download and installation
progress. Please wait for it to complete.

14/ 461

The SenseGlove Unreal Engine Handbook

A] . . Launch
Epic G Nev F Lib R (t
@ pic Games A ibrary A Unreal Engine 5.4.4

GITHUB SOURCE RELEASE NOTES © 20], B

58 2 7 5.4.4 5.5.0

Preview
o Cunen |- Cunen -

tall L s talle ug 1stalle gins nstall e
Unreal Engine

MY PROJECTS

No user projects found

Fab Library

Unreal Eng; asse om your Fab Library.

Filter by: Category v ¥ SenseGlove

The SenseGlove Unreal Engin

Ny)
e 3746 MB (12,0 MB/s)
H n x

NuLL3rrOr

12. While the download and installation are in progress, you can see the progress
in more details by clicking on the Downloads section on the sidebar.

15/461

The SenseGlove Unreal Engine Handbook

Epic Games

THE SENSEGLOVE UNREAL ENGINE PLUGIN

INSTALLING
Library

Unreal Engine DOWNLOAD 369MB of 400MB
i S | 3.83MB/s

OPERATIONS

4 ° Downloads

¢ Settings

©°® NuLL3rOr

13. Once the download and installation are complete, verify its installation by
clicking Installed Plugins under the engine you've just installed it to. The
SenseGlove plugin should appear as installed among other currently installed
plugins.

16 /461

The SenseGlove Unreal Engine Handbook

Library

Unreal Engine

- . Unreal Engine 5.4.4 Unreal Engine Plugins
MY PROJECTS

Installed

Quixel Bridge
5.4.0
The SenseGlove Unreal Engine Plugin
5.4.0
Fab Library _

Category

ve Unreal Engin

14. One last confirmation could be navigating to
YourEngineInstallationPath/Engine/Plugins/Marketplace directory.The
SenseGlove Unreal Engine Plugin source and binaries can be found inside this
directory. This is especially useful in case one desires to copy the plugin for

example to their own project's source code to run it at the project level instead
of running it at the engine level.

17 /461

The SenseGlove Unreal Engine Handbook

n ! B = | C\OPTUE 5.4\Engine\Plugins\Marketplace

Home Share View

BB =R B

Move Copy Delete Rename ew Properties X
to~ folder - B History
Open

v 4 [| This PC > WIN10 (C) OPT » UES54 Engine Plugins Marketplace

Bl Name Date modified Type
»# Quick access
[| Developer 02/09/2024 17:59 File folder

il Desktop
B SenseGlove 23/10/2024 13:06 File folder

Downloads
E Documents
B Pictures

M This PC
P 3D Objects
il Desktop
ﬁ Documents
Downloads
Music
B Pictures
&5 Videos
i WINTO (C)
W Network

&, Linux

2items |

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

18 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

Plugin Installation via Microsoft Azure
DevOps Repositories

While plugin installation via the Epic Games Launcher is the most convenient method
for most users to obtain and install the latest version of the SenseGlove Unreal
Engine Plugin via Fab, there might be valid reasons to instead download and install
the plugin directly from the SenseGlove Unreal Engine Plugin Microsoft Azure
DevOps Repository. These reasons may include:

e Downloading an older version that is no longer available on Fab.

e Downloading a recent version that has been submitted to Fab, but is still
awaiting approval and publication by the Fab Team.

e Downloading an under-development, unstable release of the plugin for testing

purposes.
e Or, any other specific needs that require direct access to the repository.

Nonetheless, here is a step-by-step guide to downloading and installing the plugin
from the Microsoft Azure DevOps Repositories.

Download a Specific Version

To download a specific version of the plugin, follow these steps:

1. Navigate to the the SenseGlove Unreal Engine Plugin Microsoft Azure DevOps
Repository.

2. Locate the branch dropdown menu at the top of the page, just below the
navigation bar, and next to the Copy to clipboard icon. There you'll find a
dropdown menu. By default, it usually selects the master branch.

19/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://www.fab.com/
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBmaster&_a=contents

The SenseGlove Unreal Engine Handbook

Azure DevOps SenseGlove SenseGlove-Unreal Repos Files ® SenseGlove-Unreal v
SenseGlove-Unreal =k & master v £/ Type tofind afile or folder...
Q_ Filter branches
Overview
Branches Tags
Boards
~ & master Default
Repos Mine
¥ 51 *
Files
¥ 52 *
Commits ® 53 * Commits
@5 Pushes ¥ 54 0 ¥ c8cal69f adjust Config/FilterPlugin.ini in order to conform to
¥ dev *
§ Branches @deg86b50 make the allbreaker assets compatible with ue 5.1+
¥ dev-mdbook-epub
O Tags ~n R ffe2526c initial public release Mamadou Babaei
Pull requests + New branch
& q ©21d92a3 fix a bug where the sgpawn right-hand grab collide
O Advanced Security
O clang-format Nov 2, 2022 ffe2526c initial public release Mamadou Babaei
q Pipelines
[.editorconfig Nov 2, 2022 ffe2526c initial public release Mamadou Babaei
Test Plans
A O gitattributes Nov 4, 2022 5dababdd move the third party directory to source in order to
! Artifacts . SN .)
O .gitignore Feb7, 2023 ffdb3657 fix gitignore rules for the Source/ThirdParty directo

3. Use the dropdown menu to choose a desired branch containing the source
code for a specific version of Unreal Engine or a specific release of the plugin
marked with a release tag.

G Azure DevOps SenseGlove SenseGlove-Unreal Repos Files @ SenseGlove-Unreal v
. SenseGlove-Unreal + § master v B/ Typetofind afile or folder...
Q. Filter tags
ﬂ Qverview
Branches Tags
% Boards
Q@ v2.0.1
Repos @ v202
| & Files @203
QO v2.04
© Commits Commits
O v2.05
25 Pushes O v2.06 c8cal69f adjust Config/FilterPlugin.ini in order to conform to
& Branches G w207 0de86b58 make the allbreaker assets compatible with ue 5.1+
o T O v2.08 a
ags S T £f82526¢ initial public release Mamadou Babaei
Pull requests
£ il Source Jul 15 €21d92a3 fix a bug where the sgpawn right-hand grab collide:
O Advanced Security
B .clang-format Nov 2, 2022 ££@82526¢ initial public release Mamadou Babaei
q Pipelines
O .editorconfig Nov 2, 2022 ££02526¢ initial public release Mamadou Babaei
A Test Plans i X X X
O gitattributes Nov 4, 2022 5da6abad move the third party directory to source in order to
! Artifacts 0 git SN . .
.gitignore Feb 7, 2023 ffdb3657 fix gitignore rules for the Source/ThirdParty director
Mi CHANGELOG.md Jul 15 2dc44999 bump the plugin version to v2.0.8 Mamadou Babaei

20/ 461

The SenseGlove Unreal Engine Handbook

Note

A branch named with engine version numbers, such as 5.4, 5.3, etc., ususally
contains the source code for the latest stable version of the plugin compatible
with that specific Unreal Engine version, provided that version is still supported.
For a comprehensive list of supported engine versions please refer to the
Platform Support Matrix.

As a general rule of thumb, the master branch should work with any supported
Unreal Engine version. This is because it does not specify any Engineversion
inside the main .uplugin file. However, there may be rare exceptions where it
does not work due to breaking changes between engine versions that the plugin
cannot accommodate. One such a instance occurred with version 2.e.x ofthe
plugin, where some breaking changes prevented UE 5.1 from sharing similar
code with versions 5.2+. For this reason, it is generally recommended to select
a branch specific to the version of the Unreal Engine you intend to use with the

plugin.

The same principles that apply to the master branch also apply to the dev
branch, which will discuss later.

We will also cover how to obtain a working version from a tag for scenarios like
the one mentioned above.

4. After selecting your desired branch or tag, click on the kebab menu (three

vertical dots) located at the top right of the screen and choose Download as
Zip to obtain the source code for that branch or tag.

21/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare
https://dev.azure.com/SenseGlove/SenseGlove-Unreal/_git/SenseGlove-Unreal/commit/b2861b0068ca59f283b983ed41efa84086826079?refName=refs%2Fheads%2F5.1&path=%2FSource%2FSenseGlove%2FSenseGlove.Build.cs&_a=compare

The SenseGlove Unreal Engine Handbook

‘:j Azure DevOps SenseGlove SenseGlove-Unreal / Repos Files @ SenseGlove-Unreal v = 6 o & @

. SenseGlove-Unreal =F 54 v 71/ Type to find a file or folder...
ﬂ Overview Files i Set up build © Clone
Contents History ®> Fork
% Boards
+ New >
Repes @ Youupdated 3° dev 4h T
ou updates ev4h ago T Upload file(s)
a Files
L Download as Zip
9 @i Name T Last change Commits
& Pushes Config Nov 30, 2022 8ca169f adjust Config/FilterPlugin.ini in order to conform to ...
& Branches Content May 29 67260917 make the allbreaker assets compatible with ue 5.1+ ...
& Tags Resources Nov 2, 2022 ££02526¢ initial public release Mamadou Babaci
£ Pull requests
. Source Jul 15 47affeas fix a bug where the sgpawn right-hand grab collider...
U Advanced Security
O clang-format Nov 2, 2022 ff@2526¢ initial public release Mamadou Babaei
* Pipelines
D editorconfig Nov 2, 2022 ££82526¢ initial public release Mamadou Babaei
Test Plans
A O gitattributes Nov 4, 2022 5daéabad move the third party directory to source in order to ...
l Avrtifacts O qit . X
gitignore Feb 7, 2023 ffdh3657 fix gitignore rules for the Source/ThirdParty director...
% Project settings & > M CHANGELOG.md Jul 15 565a2e4b bump the plugin version to v2.0.8 Mamadou Babasi

Download a Specific Version for a Specifc Unreal
Engine Version

As mentioned earlier, due to breaking changes between Unreal Engine versions, it
might not be feasible to share the same source code across different Unreal Engine
versions. Since release tags are created from the master branch, they contain code
compatible only with the latest version of Unreal Engine. Therefore, the instructions
for downloading a specific version from a release tag might not work with some
Unreal Engine versions. In such cases, you can use an alternative approach:

1. First, choose the appropriate branch for your desired Unreal Engine version
from the branch dropdown menu, as discussed earlier. Then navigate to the
History tab.

22 /461

The SenseGlove Unreal Engine Handbook

‘:j Azure DevOps SenseGlove SenseGlove-Unreal / Repos Files @ SenseGlove-Unreal v = 6 o & @

. SenseGlove-Unreal =F &51 v £/ Type to find afile or folder...
i i i]
ﬂ Overview Files ki Set up build @ Clone
Contents History T 7

% Boards

Repos

= @ Youupdated ¥ dev 4h ago Create a pull request X
a Files

9 Commits Full history ~ & Author From date B To date B X
& Pushes

Graph Commit Pull Request Status
& Branches
bump the plugin version to v2.0.2
& Tags 2fcefobe @ Mamadou Babaei Apr 25 at 12:34 PM

bump the plugin version to v2.0.1

£3 pul requests
eeb287fc . Mamadou Babaei Apr 15 at 2:56 PM

U Advanced Security

* Pipelines
A Test Plans
l Avrtifacts

8 Project settings &« »

do not call FSGHandLayer::ResetCalibration on every backend initialization
8bdaedad ° Mamadou Babaei Apr 10 at 4:38 PM

only instantiate the connected glove once instead of recreating and destr...
cbagfels ‘ Mamadou Babaei Apr 12 at 6:56 AM

bump senseglove libraries to v2.102.0-35d4de3f
3491fb7b ‘ Mamadou Babaei Apr 10 at 4:21 PM

fix the wrong header file description sections for the header files
d777be02 @) Mamadou Babaei Apr 8 at 8:24 PM

——————o——o——o——o

2. Look via the commit history for a commit message that says bump the plugin
version to vX.X.X as all releases are finalized with this exact commit message
and the plugin version. Next, click on the commit message for the version you
are looking for.

3. Once you've selected the correct commit, click on the Browse Files button
next to the kebab menu (three vertical dots) at the top right of the screen.

23/461

The SenseGlove Unreal Engine Handbook

Azure DevOps SenseGlove / SenseGlove-Unreal / Repos Commits /@ SenseGlove-Unreal v = 0 0 & @

SenseGlove-Unreal +
bump the plugin version to v2.0.2 Browse Files
Overview 2fcofobo O @) Mamadou Babaei committed Apr 25 % 5.1
Files Details
Boards
Repos Parent 1 — This commit = Filter 3 changed files g8 Inline v e
5‘3 Files
© SenseGlove-Unreal CHANGELOGmd +12
.o .m + -
| 9 Commits e /CHANGELOG.md View
Ml CHANGELOG.md
& Pushes
Ml README.md
% Branches 5 5 The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
0 SenseGlove.uplugin 6 6 and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.htnl).
707
O Tags 8 & ## [2.0.2] - 2024-04-25
9
10+ This is a patch release with no code changes.
£3 pull requests 11 +
12+ ### Added
. 13+
O Advanced Security 14 % - Introduce official Unreal Engine 5.4 support to the Unreal Engine Marketplace.
15+
- 16 + ### Changed
q Pipelines 17 +
18+ - Updated the Platform Support Matrix with the latest changes. This is the last release to suppor
19+
A Test Plans 8 28 #4 [2.0.1] - 2024-04-15
9 21
18 22 This is a bugfix release.
! Avrtifacts
Project settings «

4.You should now be in the Content tab, with the branch dropdown menu
displaying the commit hash instead of a branch name or tag. Click on the kebab
menu (three vertical dots) again, and select Download as zip . This will give you
a zip file containing the exact release you need, compatible with your chosen
Unreal Engine version.

G Azure DevOps SenseGlove SenseGlove-Unreal Repos Files @ SenseGlove-Unreal v = 0 o & @
@ senseciove-unreal 4+ & 26c0fob0 & / Typetofind afile or folder..
ﬂ Overview Files @ clone
Contents History & Fork
“ Boards
+ New >
Repes ® Youupdated ¥ dev 4h ago T Upload file(s)
Files
L Download as Zip
& Commits Name T Last change Commits
Pushes Config Nov 30, 2022 63c81ffb adjust Config/FilterPlugin.ini in order to conform to ...
& Branches Content Mar 19 411¢1C3F integrate the virtual hand mesh from allbreaker ..
TEge Resources Nov 2, 2022 ff82526¢ initial public release Mamadou Babaei
Pull it
& Py =S Source Apr 10 8bdaeda9 do not call FSGHandLayer:ResetCalibration on every..
O Advanced Security
O clang-format Nov 2, 2022 ££82526¢ initial public release Mamadou Babaei
q Pipelines
O editorconfig Nov 2, 2022 ff@2526c¢ initial public release Mamadou Babaei
A Test Plans s i
0 gitattributes Nov 4, 2022 5daéabad move the third party directory to source in order to ...
B Avifacts B gitignore Feb 7, 2023 ebsdbads fix gitignore rules for the Source/ThirdParty director..
@ Project settings &« » ML CHANGELOG.md Apr 25 2fcefebe bump the plugin version to v2.0.2 Mamadou Babaei

24 /461

The SenseGlove Unreal Engine Handbook

Download the Bleeding-edge Development Branch

Caution

The dev branchis an active development branch that is constant and ongoing
changes. As a result, the code on this branch is primarily untested and
therefore not production-ready. It may not even compile successfully or may
lack comprehensive documentation. For any serious development, it is generally
recommended to use a stable release of the plugin. The dev branch is publicly
accessible to give you a preview of upcoming features and for trial purposes
only.

The most up-to-date documentation for the dev branch can usually be found at:
at: https://unreal.dev.senseglove.com/next.

Downloading the dev branch is as easy as choosing the dev branch from the
branch dropdown menu (as discussed earlier) and then choosing Download as Zip
from the kebab menu (three vertical dots).

‘:j Azure DevOps SenseGlove SenseGlove-Unreal Repos Files © SenseGlove-Unreal v = 0 0 & @

. SenseGlove-Unreal -r & dev v B/ Type tofind afile or folder...
ﬂ Overview Files i Set up build © Clone
Contents History & Fork
% Boards
+ New >
@ revos © Youupdated ¥ devah x
Ou updatex evahago T Upload file(s)
a Files
L Download as Zip
¢ Commits Name 1 Last change Commits
& Pushes Config Tuesday 2b124667 remove the changelog.md file from filterplugin list a
& Branches Content Jun 4 d02838b2 removed the allbreaker virtual hand model as it's no...
& Tags .
Handbook 4h ago f2beaafa add an important alert Mamadou Babaei
Pull t
€3 Puilrequests Packager Tuesday fe843ea6 bump the SenseGlove Unreal Engine Marketplace Pa...
O Advanced Security
Resources Nov 2, 2022 ff@2526c¢ initial public release Mamadou Babaei
* Pipelines
Source Sunday 33649f10 replace all bitfield uproperties with booleans Mama..
Test Plans
A B clang-format Nov 2, 2022 ff82526¢ initial public release Mamadou Babaei
. it O editorconfig Nov 2, 2022 ffe2526c¢ initial public release Mamadou Babaei
& Project settings & » O gitattributes Jul 25 £3fabedd merge the pack branch into the plugin's source and ..

25/461

https://unreal.dev.senseglove.com/next
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal?path=%2F&version=GBdev&_a=contents

The SenseGlove Unreal Engine Handbook

Installation

Once you have obtained the desired plugin version compatible with the Unreal
Engine version you have in mind using any of the methods mentioned above, it's
time to build and install the plugin. There are two ways to install the SenseGlove

Unreal Engine Plugin, one is at the engine level, and the other is per project.

e Engine-level installation: this method makes the plugin accessible to any
project within that Unreal Engine version.

e Per-project installation: this method makes the plugin accessible only to a
specific project.

Warning

Please note that it is best practice to install the plugin either at the project level
or the engine level, but not both. Having the plugin installed in both locations, at
the same time, can lead to various issues, especially if the version of the plugin
installed at the engine level differs from the one installed at the plugin level. A
guide on verifying the plugin version is also available as well.

Engine-level installation

Per-project installation

1. Locate your existing C++ or Blueprint project, or create a new project from
scratch.
Important

Before proceeding, make sure your project's Unreal Editor is closed, and you do
not have your project open in your C++ IDE to avoid any issues.

2. Inside your project's root directory create a new Plugins directory if you don't
have one already.

26 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

3.Inside the pPlugins directory create a new directory named SenseGlove .
4, Extract the content of your downloaded zip file into the SsenseGlove directory.

5. Remove any directories or files that are only meant for use by the SenseGlove
Unreal Engine Plugin maintainers. These are not part of the distributed plugin
package and are not required by either Unreal Engine or the SenseGlove Unreal
Engine Plugin to function correctly.

The mandatory files and folders to stay are as follows:

Config

Content

Resources

Source
SenseGlove.uplugin

Anything else can be safely removed. For example, these files and folders can be
safely deleted:

Handbook
Packager
.clang-format
.editorconfig
.gitattributes
.gitignore
README .md

6. Ensure your project has the correct structure.

For a Blueprint-only project, it should look something like this:

271461

The SenseGlove Unreal Engine Handbook

MyBlueprintProject

— Confiig

— Content

— Plugins

I— SenseGlove

— Confiig
— Content
— Resources
— SenseGlove.uplugin
— Source

—— MyBlueprintProject.uproject

For a C++ project, the structure should look like this:

281461

The SenseGlove Unreal Engine Handbook

MyCppProject

— Confiig

— Content

— Plugins

L—— SenseGlove

— Confiig
— Content
— Resources
— SenseGlove.uplugin
— Source

— Source

—— MyCppProject.uproject

Tip

If you are keeping your project under Git and Git LFS, consider keeping the
.gitignore and .gitattributes as they help keep irrelevant files out of the
remote repository, or manage binary blobs efficiently.

7. OK, now it's time to build the plugin.

Note

For Linux build instructions see the Linux Build Instructions section.
For a Blueprint-only project, on Microsoft Windows simply double-clicking the

project's .uproject file should present you with a pop-up informing you that some
binary modules are missing.

29 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html#linux-build-instructions

The SenseGlove Unreal Engine Handbook

Missing VirtualHandBP Modules X

The following modules are missing or built with a different engine version:

SenseGlove
SenseGloveAndroid
SenseGloveBackend
SenseGloveBackendKismet
SenseGloveBuildHacks
SenseGloveConnect
SenseGloveConnectImpl
SenseGloveConnectiKismet
SenseGloveCore
SenseGloveCoreImpl
SenseGloveCoreKismet
SenseGloveDebug
SenseGloveDebugKismet
SenseGloveEditor
SenseGlovelnterop

(48 others, see log for details)

Would you like to rebuild them now?

Yes No

After confirming, the build process will start automatically, and a dialog indicating
the build progress will be shown:

30/461

The SenseGlove Unreal Engine Handbook

M Unreal Engine X

Starting build...

Hide log
- —

[199/455)] Compile [x64] Module.SenseCGlowvelndroid. cpp ~
[200/455] Link [x64] UnrealEditor-SenseGloveCorelImpl.dll
Creating library C:'\Users\mamadou\DesktophideviVirtualHandEP®
[201/455] Compile [x64] SGGloveTracker.cpp
[Z02/455] Compile [x64] SenseCGlovelndroid.cpp
[203/455) Link ([x64] UnrealEditor-SenseCGloveDebug.dll
Creating library C:'\WUsersimamadoui\DesktophdeviVirtualHandBP®

Once finished successfully, the project will be loaded.

Note

Sometimes, due to an esoteric bug in some versions of Unreal Engine, the build
process for Blueprint-only projects may immediately fail after choosing Yes in
the Missing Modules dialog. If this happens, one workaround would be to try to
build the plugin inside a temporary C++ project, then copy the
Plugins/SenseGlove folder containing the binaries, from the C++ project to your
Blueprint project and then try to reopen the project again.

For C++ projects, on Microsoft Windows, right-click on your C++ .uproject file and
choose Generate Visual Studio project files:

31/461

The SenseGlove Unreal Engine Handbook

DerivedDataCache
Intermediate

Plugins
Open

Saved
Launch game

Source
_ Generate Visual Studio project files
[vsconfig

— Switch Unreal Engine version...
() VirtualHandCpp.uprc =

Edit with Notepad++

Edit with HHD Hex Editor Neo
Edit with CLion

Edit with JetBrains Rider

Edit with RustRover

7-Zip

== Scan with Microsoft Defender...

A dialog will pop up shows you the progress of generating the Visual Studio project
files:

(M Unreal Engine X

Generating project files... T

Punning UnrealBuildTool: dotnet "..%..%“Engine\Binaries \DotNET\1 A
Log file: C:\Users’mamadou’Desktop’deviVirtualHandCpp" Saved’ Lo
Log file: C:\Usersi\mamadou\AppData’\Local\UnrealBuildTool\Log_ @]

Generating VisualStudio project files:

Discovering modules, targets and source code for project...
Binding IntelliSense data. ..

< >

32/461

The SenseGlove Unreal Engine Handbook

Once the project files are generated, open up the C++ project in your preferred C++
IDE and build the project. After this, the project can be loaded in the Unreal Editor.

8. Once the plugin has been built successfully, ensure the SenseGlove Unreal
Engine is enabled and verify the plugin version matches the expected version.

Linux Build Instructions

When building the SenseGlove Unreal Engine Plugin on Linux, you won't encounter
the Missing Modules dialog that appears on Microsoft Windows. Instead, examining
the Unreal Editor logs reveals that the Unreal Editor automatically chooses No in
response to the Would you like to rebuild them now? question asthe No s
implied states.

33/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject

LogLinux: Warning: MessageBox: The following modules are missing or built
with a different engine version:

SenseGlove
SenseGloveAndro-id
SenseGloveBackend
SenseGloveBackendKismet
SenseGloveBuildHacks
SenseGloveConnect
SenseGloveConnectImpl
SenseGloveConnectKismet
SenseGloveCore
SenseGloveCoreImpl
SenseGloveCoreKismet
SenseGloveDebug
SenseGloveDebugKismet
SenseGloveEditor
SenseGloveInterop

(+8 others, see log for details)

Would you like to rebuild them now?: Missing MyBlueprintProject Modules: No
is 1dimplied.

LogCore: Engine exit requested (reason: EngineExit() was called)

LogExit: Preparing to exit.

LogPakFile: Destroying PakPlatformFile

LogExit: Exiting.

LogInit: Tearing down SDL.

Exiting abnormally (error code: 1)

If your Unreal Engine installation on Linux was obtained from the GitHub Sourcesy
you can generate the project files using the following command:

$ /path/to/UnrealEngine/GenerateProjectFiles.sh \
/path/to/MyProject/MyProject.uproject \
-editor -game -makefile

However, if you are using a prebuilt Linux version of Unreal Engine, the main
GenerateProjectFiles.sh script at the engine root does not exists. Instead, we have
to invoke the underlying GenerateProjectFiles.sh script located elsewhere. This is a
different script which shares the same name and is also present in the GitHub

34 /461

https://github.com/EpicGames/UnrealEngine
https://www.unrealengine.com/en-US/linux

The SenseGlove Unreal Engine Handbook

sources. The main GenerateProjectFiles.sh script at the engine root is actually a
wrapper around this script.

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\

/path/to/MyProject/MyProject.uproject \

-editor -game -makefile

Still, running the any of the above commands on a Blueprint project results in the
following error:

$

/path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject \
-editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK

Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt

Project file formats specified via the command line will be [ignored when
generating

project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" 2>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
<ProjectFileGenerator>
<Format>Make</Format>
</ProjectFileGenerator>
</Configuration>

Generating Make project files:

Discovering modules, targets and source code for project...

Total execution time: 0.35 seconds

Directory '/path/to/MyBlueprintProject/MyBlueprintProject' is missing
'Source' folder.

For a C++ project, however, the project files will generate without any issues:

35/461

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\

/path/to/MyCppProject/MyCppProject.uproject \

-editor -game -makefile

Setting up Unreal Engine project files...

Setting up bundled DotNet SDK

Log file: /home/mamadou/.config/Epic/UnrealBuildTool/Log_GPF.txt

Project file formats specified via the command line will be ignored when
generating

project files from the editor and other engine tools.

Consider setting your desired IDE from the editor preferences window, or
modify your
BuildConfiguration.xml file with:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration xmlns="https://www.unrealengine.com/BuildConfiguration">
<ProjectFileGenerator>
<Format>Make</Format>
</ProjectFileGenerator>
</Configuration>

Generating Make project files:
Discovering modules, targets and source code for project...
Generating data for project -{indexing... 100%

Generating QueryTargets data for editor...
Total execution time: 2.98 seconds

So, the workaround for Blueprint projects is to build the plugin inside a C++ project

and then copy the pPlugin/SenseGlove directory, which contains the built binary
modules, to the corresponding directory in your Blueprint project.

36/461

The SenseGlove Unreal Engine Handbook

$ /path/to/UnrealEngine/Engine/Build/BatchFiles/Linux/GenerateProjectFiles.sh
\
/path/to/MyCppProject/MyCppProject.uproject \
-editor -game -makefile
$ make MyCppProjectEditor -C /path/to/MyCppProject/
$ cp -vr \
/path/to/MyCppProject/Plugins/SenseGlove \
/path/to/MyBlueprintProject/Plugins/
$ /path/to/UnrealEngine/Engine/Binaries/Linux/UnrealEditor \
/path/to/MyBlueprintProject/MyBlueprintProject.uproject

37 /461

The SenseGlove Unreal Engine Handbook

Enabling The SenseGlove Unreal Engine
Plugin and Veirfying the Plugin Version

Enabling the SenseGlove Unreal Engine Plugin is a very simple and straightforward
procedure. Furthermore, checking which version of the plugin your project is using
may sometimes come in handy, especially if you have multiple versions of the plugin
installed on different engine versions or various projects.

1. Inside the Unreal Editor for your project, select the Plugins from the Edit
menu.

File | Edit | Window Tools Build Select Actor Help

["HN.)

h'Q

) Undo History

+t. Editor Preferences...
W% Project Settings...
Plugins

2. 0Once the plugin window/tab is open, start typing SenseGlove until you're able
to spot the SenseGlove Unreal Engine Plugin. There you could find the plugin

381/461

The SenseGlove Unreal Engine Handbook

version, and other useful resources, such as the documentation website or
support contact.

/7 N File Edit Window Tools Help
1))
Oveview & Plugins
-+ Add X SenseGlove L+ Settings

All Plugins
@ ALL PLUGINS

Version 2.1.0
PROJECT Integrating the R haptic controller into Unreal Engine SenseGlove x

Virtual Reality # Edit & Package & Documentation @ Support

INSTALLED

Codecs

BUILT-IN

2D

3. If the plugin is not enabled, it does not have the checkmark next to i

,- N\ File Edit Window Tools Help
A1) i
Oveview & Plugins
< Add X SenseGlove {:} Settings

All Plugins

&= ALL PLUGINS

Version 2.1.0
PROJECT Integrating the E haptic controller into Unreal Engine SenseGlove 5

& Y /
Virtual Reality # Edit & Package 4 Documentation @ Support

INSTALLED

Codecs

BUILT-IN

2D

Accessibility
Advertising

Al

Analytics

Android

Android Background Service
Animation

Audio

Augmented Reality
BackgroundHTTP
BlendSpace
Blueprints

Build Distribution
Cameras

Codecs

4. It should be easy to click the checkmark and enable the plugin if that's not the
case. Once the plugin is enabled, the Unreal Editor asks to be restarted. Click on
the Restart Now button as this is mandatory to activate the plugin inside your

project.

39/461

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(A1)

Oveview % Plugins

+ Add X SenseGlove ¢ Settings

All Plugins
@ ALL PLUGINS

Version 2.1.0
PROJECT Integrating the g haptic controller into Unreal Engine SenseGlove #

Virtual Reality 2 Edit @& Package & Documentation @ Support

INSTALLED
Codecs

BUILT-IN

Analytics

Android

Android Background Service
Animation

Audio

Augmented Reality
BackgroundHTTP
BlendSpace

Blueprints

Build Distribution

Can;eras A You must restart Unreal Editor for your changes to take effect Restart Now
Codecs

5. The source code for the plugin might be required to be rebuilt depending on
how you have obtained and installed the plugin, usually the Unreal Editor lets
you know and does this automatically. If it's required to build the plugin source,
and it fails to do so, it usually suggests an alternative approach such as opening
your regenerating the project files and rebuilding the project inside a C++ IDE.
Once this is done the Editor for your projects re-opens and you can follow steps
1 and 2 in order to verify the plugin's version and availability inside your
project.

Video Tutorial

A video demonstrating the same instructions in more detail is also available on the
SenseGlove YouTube channel.

40/ 461

https://youtu.be/iF0JU2kpNhw
https://www.youtube.com/@senseglove4021
https://www.youtube.com/@senseglove4021

The SenseGlove Unreal Engine Handbook

411/ 461

The SenseGlove Unreal Engine Handbook

SenseCom

SenseCom (short for SenseGlove Communications) is a background program that
runs alongside your Unreal Engine application. Its primary function is to discover,
and connect to SenseGlove devices on your system, exchanging data with them,
much like a "SteamVR for Haptic Gloves." The SenseGlove Unreal Engine Plugin relies
on SenseCom to communicate with any SenseGlove hardware.

Communication between your application and the physical gloves are possible via
either Bluetooth Low Energy (a.k.a. Bluetooth LE, colloquially BLE, formerly marketed
as Bluetooth Smart), or Bluetooth Serial (a.k.a. BT Serial) depending on the type and
model of your glove, or the firmware version.

Important

Some glove models support firmware upgrades from a Bluetooth Serial
firmware to a BLE-compatible firmware version. For more information, refer to
the relevant documentation here, as this topic is beyond the scope of this
handbook.

Note

SenseCom is required only for communication on Windows or Linux. For
standalone Android devices, the communication functionality is embedded
directly into your application.

Note

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

42/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/
https://senseglove.gitlab.io/SenseGloveDocs/nova-2.html?highlight=firmware#updating-your-nova-2-0-firmware
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

SenseCom (Bluetooth Low Energy)

Up to SenseCom v1.7.x, the only supported Bluetooth protocol for communication
was Bluetooth Serial. However, starting with the v1.8.x series, SenseCom
introduced support for Bluetooth Low Energy, which is now the preferred method of
communication.

Important

If SenseCom fails to recognize your gloves with Bluetooth Low Energy firmware,
it may be because the Legacy Connections option is enabled. In that case
SenseCom is only able to discover gloves with a Bluetooth Serial firmware.
Enabling this option should allow SenseCom to discover and connect to your
glove.

@ senseCom 1.8.0b — >

Settings SenseCom Settings
Pair Devices Automatic Calibration (@

Connections Legacy Connections o=

Docs Beta Firmware Updates .—

Github

Important

Some glove models support firmware upgrades from a Bluetooth Serial
firmware to a BLE-compatible firmware version. For more information, refer to
the relevant documentation here, as this topic is beyond the scope of this
handbook.

43 /461

https://senseglove.gitlab.io/SenseGloveDocs/nova-2.html?highlight=firmware#updating-your-nova-2-0-firmware

The SenseGlove Unreal Engine Handbook

SenseCom on Android (Bluetooth Low
Energy)

Unlike PCVR-mode on Windows or Linux, there's no separate SenseCom application
available for Standalone-mode on Android; instead, the communication functionality
is integrated into your application.

As a result, in Standalone-mode, unlike PCVR-mode where BLE gloves do not require
pairing at the operating system level and connections are managed by SenseCom,
you need to pair your desired gloves through your operating system's Bluetooth
settings before launching any applications that rely on the SenseGlove Unreal Engine
Plugin. These instructions vary depending on the vendor and model of your Head-
Mounted Display device. Please refer to the official documentation for detailed
instructions:

e Meta Quest: Connect a compatible Bluetooth device to Meta Quest headsets
e HTCVIVE: Pairing Bluetooth devices

If you are using a different kind of HMD, ensure you consult the vendor-specific
instructions to properly pair your gloves with your HMD of choice in Standalone-
mode.

44] 461

https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.meta.com/en-gb/help/quest/3263186127339632/
https://www.vive.com/eu/support/vive-xr/category_howto/pairing-bluetooth-devices.html

The SenseGlove Unreal Engine Handbook

SenseCom on GNU/Linux (Bluetooth
Low Energy)

Follow these steps to quickly set up and run SenseCom on GNU/Linux:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type

<> code () Issues '5 11 Pullrequests U Discussions () Actions [Projects 1 0 wiki © security [~ Insi

SenseCom Public < EditPins ~ & Watch

¥ main - ¥ 1Branch © 2 Tags Add file ~ <> Code ~

Codespaces
¢ MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI
B Linux

. ~) it@github.com:Adjuvo/SenseCom.git
B win S m v1.6. gitée L e
[LICENSE

[README.md n ymmit X Open with GitHub Desktop

O READMEmd.bak Open with Visual Studio

[I1 README &8 MIT license

[5] Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer.
$ unzip SenseCom-main.zip -d /some/path/

3. Navigate to the SenseCom_Linux_Latest folder containing the SenseCom
binaries for GNU/Linux:

$ cd /some/path/SenseCom-main/Linux/SenseCom_Linux_Latest/

45/ 461

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

4, List the files and check the executable permissions for the main SenseCom
binary, SenseCom.x86_64 :

$ 1s -ahl

total 20M

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 .

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 ..

drwxr-xr-x 7 mamadou mamadou 34 Apr 10 11:24 SenseCom_Data
-rw-r--r-- 1 mamadou mamadou 15K Apr 10 11:24 SenseCom.x86_64
-rw-r—-—-r-- 1 mamadou mamadou 33M Apr 10 11:24 UnityPlayer.so

5. As seen above the senseCom.x86_64 binary does not have the executable
permission. Run the following command to set the executable permission for
all users:

$ chmod a+x SenseCom.x86_64

6. Veirfy the executable permission has been set on SenseCom.x86_64 :

$ 1s -1 SenseCom.x86_64

-rwxr-xr-x 1 mamadou mamadou 14720 Apr 10 11:24 SenseCom.x86_64

7. Make sure the glove is powered on.

8. Time to run the SenseCom executable:

46 / 461

The SenseGlove Unreal Engine Handbook
$./SenseCom.x86_64

[UnityMemory] Configuration Parameters - Can be set up in boot.config
"memorysetup-bucket-allocator-granularity=16"
"memorysetup-bucket-allocator-bucket-count=8"
"memorysetup-bucket-allocator-block-size=4194304"
"memorysetup-bucket-allocator-block-count=1"
"memorysetup-main-allocator-block-size=16777216"
"memorysetup-thread-allocator-block-size=16777216"
"memorysetup-gfx-main-allocator-block-size=16777216"
"memorysetup-gfx-thread-allocator-block-size=16777216"
"memorysetup-cache-allocator-block-size=4194304"
"memorysetup-typetree-allocator-block-size=2097152"
"memorysetup-profiler-bucket-allocator-granularity=16"
"memorysetup-profiler-bucket-allocator-bucket-count=8"
"memorysetup-profiler-bucket-allocator-block-size=4194304"
"memorysetup-profiler-bucket-allocator-block-count=1"
"memorysetup-profiler-allocator-block-size=16777216"
"memorysetup-profiler-editor-allocator-block-size=1048576"
"memorysetup-temp-allocator-size-main=4194304"
"memorysetup-job-temp-allocator-block-size=2097152"
"memorysetup-job-temp-allocator-block-size-background=1048576"
"memorysetup-job-temp-allocator-reduction-small-platforms=262144"
"memorysetup-temp-allocator-size-background-worker=32768"
"memorysetup-temp-allocator-size-job-worker=262144"
"memorysetup-temp-allocator-size-preload-manager=262144"
"memorysetup-temp-allocator-size-nav-mesh-worker=65536"
"memorysetup-temp-allocator-size-audio-worker=65536"
"memorysetup-temp-allocator-size-cloud-worker=32768"
"memorysetup-temp-allocator-size-gfx=262144"

Loading 1in SingleInstance mode

47 | 461

The SenseGlove Unreal Engine Handbook

We are not detecting any SenseGlove connections on your
system. Please ensure your devices are paired via Bluetooth.

9. After running SenseCom, it will not automatically connect to your gloves unless
you have already paired them. To pair your devices, navigate to the hamburger

menu and select Pair Devices.

Settings

Connections

Docs t detecting any SenseGlove connections on your
ase ensure your devices are paired via Bluetooth.
Github

10. Once inside the Pair Devices section, in case your gloves are already turned
on, you should be able to spot them inside the Nearby Devices list.

48 /461

MNova 2-030M-L

MNova 2-03010-R

Important

The SenseGlove Unreal Engine Handbook

If SenseCom fails to recognize your gloves with Bluetooth Low Energy firmware,
it may be because the Legacy Connections option is enabled. In that case
SenseCom is only able to discover gloves with a Bluetooth Serial firmware.
Enabling this option should allow SenseCom to discover and connect to your

glove.

Settings
Pair Devices
Connections
Docs

Github

SenseCom Settings
Automatic Calibration (e

Legacy Connections -

Beta Firmware Updates =

11. Clicking on any glove within the Nearby Devices list will prompt a pairing
confirmation. If this is the desired glove you wish to pair, proceed by clicking the
Confirm button.

49 /461

The SenseGlove Unreal Engine Handbook

Are you sure you want to pair with Nova

2-03011-L7

12. After pairing all gloves, you can return to the main SenseCom window by
pressing the < Back button. If needed, you can always revisit the Paired

Devices list to unpair any gloves.

< Back

Nova 2-03011-L G

Nova 2-03010-R Connected

Nearby Devices

13. If you have followed all the steps correctly, upon returning to the main
SenseCom window, you should see that your gloves are connected

50/ 461

The SenseGlove Unreal Engine Handbook

= Calibrate

Nowva 2-030T71-L Mova 2-03010-R

51/461

The SenseGlove Unreal Engine Handbook

SenseCom on Microsoft Windows
(Bluetooth Low Energy)

Follow these steps to quickly set up and run SenseCom on Microsoft Windows:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type

<> code () Issues '5 11 Pullrequests U Discussions () Actions [Projects 1 0 wiki © security [~ Insi

SenseCom Public < EditPins ~ & Watch

¥ main - ¥ 1Branch © 2 Tags G file Add file ~ <> Code ~

Codespaces
¢ MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI

BB Linux

. ~) it@github.com:Adjuvo/SenseCom.git
B win S m v1.6. gitée L e
[LICENSE

[README.md n ymmit X Open with GitHub Desktop

O READMEmd.bak Open with Visual Studio

[I] README &1 MIT license [Z) Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer after
downloading it.

3. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

4, Make sure the glove is powered on.

5. Now, it's time to run SenseCom. Navigate to the folder where you extracted
SenseCom and go to

52 /461

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

/path/to/extracted/SenseCom/directory/Win/SenseCom_Win_Latest, and then
run the executable SenseCom.exe .

@ senseCom 1.8.0b — et
— Exit
Left Hand Right Hand

6. After running SenseCom, it will not automatically connect to your gloves unless
you have already paired them. To pair your devices, navigate to the hamburger
menu and select Pair Devices.

. SenseCom 1.8.0b

Settings
Pair Devices

Connections

o /()

Left Hand Right Hand

7.0nce inside the Pair Devices section, in case your gloves are already turned
on, you should be able to spot them inside the Nearby Devices list.

53/461

The SenseGlove Unreal Engine Handbook

@ senseCom 1.8.0b — et

< Back

Paired Devices

Mearby Devices

Nowva 2-03010-R

Mowva 2-03011-L

Important

If SenseCom fails to recognize your gloves with Bluetooth Low Energy firmware,
it may be because the Legacy Connections option is enabled. In that case
SenseCom is only able to discover gloves with a Bluetooth Serial firmware.

Enabling this option should allow SenseCom to discover and connect to your
glove.

@ senseCom 1.8.0b — >

Settings SenseCom Settings
Pair Devices Automatic Calibration (@

Connections Legacy Connections .—

Docs Beta Firmware Updates =

Github

8. Clicking on any glove within the Nearby Devices list will prompt a pairing
confirmation. If this is the desired glove you wish to pair, proceed by clicking the

54 /461

The SenseGlove Unreal Engine Handbook

Confirm button.

. SenseCom 1.8.0b

Are you sure you want to pair with Nova
2-03010-R?

Confirm Cancel

9. After pairing all gloves, you can return to the main SenseCom window by
pressing the < Back button. If needed, you can always revisit the Paired
Devices list to unpair any gloves.

. SenseCom 1.8.0b

< Back

Nova 2-03010-R Connected

Nova 2-03011-L Connected

Mearby Devices

10. If you have followed all the steps correctly, upon returning to the main
SenseCom window, you should see that your gloves are connected

55/461

The SenseGlove Unreal Engine Handbook

@ senseCom 1.8.0b — et

== Calibrate

Nova 2-030T71-L MNova 2-03010-R

56 /461

The SenseGlove Unreal Engine Handbook

SenseCom (Bluetooth Serial)

Up to SenseCom v1.7.x, the only supported Bluetooth protocol for communication
was Bluetooth Serial. However, starting with the v1.8.x series, SenseCom
introduced support for Bluetooth Low Energy, which is now the preferred method of
communication.

Important

If you are using SenseCom v1.8.x+ and it fails to recognize your gloves with a
Bluetooth Serial firmware, it may be because the Legacy Connections option is
disabled, which is the default. Enabling this option should allow SenseCom to
discover and connect to your glove.

@ senseCom 1.8.0b — >

Settings SenseCom Settings

Pair Devices Automatic Calibration (@)=

Connections Legacy Connections ®

Docs Beta Firmware Updates {m
Github

Important

Some glove models support firmware upgrades from a Bluetooth Serial
firmware to a BLE-compatible firmware version. For more information, refer to
the relevant documentation here, as this topic is beyond the scope of this
handbook.

571461

https://senseglove.gitlab.io/SenseGloveDocs/nova-2.html?highlight=firmware#updating-your-nova-2-0-firmware

The SenseGlove Unreal Engine Handbook

SenseCom on Android (Bluetooth Serial)

Unlike PCVR-mode on Windows or Linux, there's no separate SenseCom application
available for Standalone-mode on Android; instead, the communication functionality
is integrated into your application.

As a result, you need to pair your desired gloves through your operating system's
Bluetooth settings before launching any applications that rely on the SenseGlove
Unreal Engine Plugin. These instructions vary depending on the vendor and model of
your Head-Mounted Display device. Please refer to the official documentation for
detailed instructions:

e Meta Quest: Connect a compatible Bluetooth device to Meta Quest headsets
e HTCVIVE: Pairing Bluetooth devices

If you are using a different kind of HMD, ensure you consult the vendor-specific
instructions to properly pair your gloves with your HMD of choice in Standalone-
mode.

58 /461

https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.fab.com/listings/62bcdd2a-0bb1-4f34-b7b8-c5e7c9313099
https://www.meta.com/en-gb/help/quest/3263186127339632/
https://www.vive.com/eu/support/vive-xr/category_howto/pairing-bluetooth-devices.html

The SenseGlove Unreal Engine Handbook

SenseCom on GNU/Linux (Bluetooth
Serial)

Follow these steps to quickly set up and run SenseCom on GNU/Linux:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type

<> code () Issues '5 11 Pullrequests U Discussions () Actions [Projects 1 0 wiki © security [~ Insi

SenseCom Public < EditPins ~ & Watch

¥ main - ¥ 1Branch © 2 Tags Add file ~ <> Code ~

Codespaces
¢ MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI
B Linux

. ~) it@github.com:Adjuvo/SenseCom.git
B win S m v1.6. gitée L e
[LICENSE

[README.md n ymmit X Open with GitHub Desktop

O READMEmd.bak Open with Visual Studio

[I1 README &8 MIT license

[5] Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer.
$ unzip SenseCom-main.zip -d /some/path/

3. Navigate to the SenseCom_Linux_Latest folder containing the SenseCom
binaries for GNU/Linux:

$ cd /some/path/SenseCom-main/Linux/SenseCom_Linux_Latest/

59 /461

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

4, List the files and check the executable permissions for the main SenseCom
binary, SenseCom.x86_64 :

$ 1s -ahl

total 20M

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 .

drwxr-xr-x 3 mamadou mamadou 5 Apr 10 11:24 ..

drwxr-xr-x 7 mamadou mamadou 34 Apr 10 11:24 SenseCom_Data
-rw-r--r-- 1 mamadou mamadou 15K Apr 10 11:24 SenseCom.x86_64
-rw-r—-—-r-- 1 mamadou mamadou 33M Apr 10 11:24 UnityPlayer.so

5. As seen above the senseCom.x86_64 binary does not have the executable
permission. Run the following command to set the executable permission for
all users:

$ chmod a+x SenseCom.x86_64

6. Veirfy the executable permission has been set on SenseCom.x86_64 :

$ 1s -1 SenseCom.x86_64

-rwxr-xr-x 1 mamadou mamadou 14720 Apr 10 11:24 SenseCom.x86_64

7. Time to run the SenseCom executable:

60 /461

The SenseGlove Unreal Engine Handbook
$./SenseCom.x86_64

[UnityMemory] Configuration Parameters - Can be set up in boot.config
"memorysetup-bucket-allocator-granularity=16"
"memorysetup-bucket-allocator-bucket-count=8"
"memorysetup-bucket-allocator-block-size=4194304"
"memorysetup-bucket-allocator-block-count=1"
"memorysetup-main-allocator-block-size=16777216"
"memorysetup-thread-allocator-block-size=16777216"
"memorysetup-gfx-main-allocator-block-size=16777216"
"memorysetup-gfx-thread-allocator-block-size=16777216"
"memorysetup-cache-allocator-block-size=4194304"
"memorysetup-typetree-allocator-block-size=2097152"
"memorysetup-profiler-bucket-allocator-granularity=16"
"memorysetup-profiler-bucket-allocator-bucket-count=8"
"memorysetup-profiler-bucket-allocator-block-size=4194304"
"memorysetup-profiler-bucket-allocator-block-count=1"
"memorysetup-profiler-allocator-block-size=16777216"
"memorysetup-profiler-editor-allocator-block-size=1048576"
"memorysetup-temp-allocator-size-main=4194304"
"memorysetup-job-temp-allocator-block-size=2097152"
"memorysetup-job-temp-allocator-block-size-background=1048576"
"memorysetup-job-temp-allocator-reduction-small-platforms=262144"
"memorysetup-temp-allocator-size-background-worker=32768"
"memorysetup-temp-allocator-size-job-worker=262144"
"memorysetup-temp-allocator-size-preload-manager=262144"
"memorysetup-temp-allocator-size-nav-mesh-worker=65536"
"memorysetup-temp-allocator-size-audio-worker=65536"
"memorysetup-temp-allocator-size-cloud-worker=32768"
"memorysetup-temp-allocator-size-gfx=262144"

Loading 1in SingleInstance mode

8. If you have already paired any glove with your system, SenseCom should
recognize and connect to your glove(s) shortly. If not, please follow the
instructions on How to connect to Nova gloves using Blueman Bluetooth
Manager or How to connect to Nova gloves using Command-line.

61/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/blueman-bluetooth-manager.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/command-line.html

The SenseGlove Unreal Engine Handbook

= Calibrate

A)

Nova-1217-L Right Hand

Important

If you are using SenseCom v1.8.x+ and it fails to recognize your gloves with a
Bluetooth Serial firmware, it may be because the Legacy Connections option is
disabled, which is the default. Enabling this option should allow SenseCom to
discover and connect to your glove.

Settings SenseCom Settings
Pair Devices Automatic Calibration =

Connections Legacy Connections o

Docs Beta Firmware Updates =

Github

Note

62 /461

The SenseGlove Unreal Engine Handbook

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

63 /461

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

Connect to Nova gloves using Blueman
Bluetooth Manager (Bluetooth Serial)

Follow these steps to pair a Nova glove with your PC on GNU/Linux usng the
Blueman Bluetooth Manager:

1. Install Blueman Bluetooth Manager on your Linux distribution using the
appropriate package manager:

ETS

Gentoo
$ emerge -atuv net-wireless/blueman

Arch, Manjaro
$ sudo pacman -S blueman

Cent0S, Fedora, AlmalLinux, Rocky Linux
$ sudo dnf install blueman

CentOS/RHEL
$ sudo yum install epel-release
$ sudo yum install blueman

Debian, Ubuntu
$ sudo apt install blueman

openSUSE
sudo zypper tinstall blueman

Solus
$ sudo eopkg install blueman

Void Linux
$ sudo xbps-install -S blueman

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

64 /461

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

The SenseGlove Unreal Engine Handbook

2. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

3. Make sure the glove is turned on.

4, Start the Blueman Bluetooth Manager and verify you have a recent version
installed by selecting Help > About from the application's menu.

blueman-manager

2.4.2

Blueman is a GTK+ Bluetooth manager

https://aithub.com/blueman-project/blueman

Copyright € D8 Valmantas Paliksa
Copyright 8 Tadas Dallyda
Copyright © 2008 2024 blueman project

Credits Close

5. If you don't see your glove, click the search button on the toolbar or select
Adapter > Search from the application's menu to look for new Bluetooth

devices.

65/461

"§ Heaaset
2. 38:18:4C:E9:69:7A

-~ Bedroom

martphone

D OnePlus 8 Pro
: ~:17:CF:1D:35:37

- [TV] Samsung AU

AOD7 173576114 :

* Nova 2 0667-L
Misc

Important

The SenseGlove Unreal Engine Handbook

Before starting the search operation, ensure that your PC's Bluetooth controller
is turned on by verifying its status on the right side of the toolbar next to the
Bluetooth logo. If disabled, the Search button will be grayed out.

66 /461

- De

:81:32

D OnePlus 8 Pro

ne

-~ LE_WH-1000XM3
‘ Headset

" 38:18:4C:E9:69:7A

The SenseGlove Unreal Engine Handbook

$

Click to disable.

6. A progress bar will appear on the application's status bar. If a new device is
found, it will be listed in the main device list area.

67 /461

The SenseGlove Unreal Engine Handbook

Adapter Device View

V -
-~ LE_WH-1000XM3
a J Headset

38:18:4C:E9:69:7A

-~ Bedroom

@ B Headset
"~ 4F:9D:F8:20:43:F3

>~ ilLamp

@ O Headset
YT (9:A3:07:41:91:B0

[TV] UE4015500

. video display and loudspeaker

CC:B1:1A:2D:A8:A4
Ej OnePlus 8 Pro

Smartphone

5C:17:CF:1D:35:37
[TV] Samsung AU7100 75 TV

. Video display and loudspeaker

A@:D7:F3:76:14:51

Nova 2 0667-L
* Miscellaneous
B8:D6:1A:BA:81:32

NOVA-1217-L

Uncategorized

94:3C:C6:47:65:72
A~ B831.99 KB 3.00 B/s ¥v3.81 MB 3.00 B/s ® B
7.0nce the glove is found, click on it to select it.
8. Either right-click on the device, or go to the Device menu, then choose Pair.

9. Blueman will prompt you to pair the glove with a notification. Click Confirm to
proceed.

EUS Mamadou B

* Bluetooth

Pairing request for:
NOVA-1217-L
(94:3C:CH:47:65:72)
Confirm value for
authentication: 500875

confirm| Deny

68 /461

The SenseGlove Unreal Engine Handbook

9. After pairing, either right-click on the device again, or go to the Device menu,
then choose Trust.

10. If everything has been successful, the key icon indicates successful pairing, and
the checkmark confirms the device is trusted.

te : ew Help
Q, search v -
>~ LE_WH-1000XM3
§ Head
' 38:18:4C:E9:69:7A
=~ Bedroom

NOVA—1217—L
Uncategorized

94:3C:(C6:47:65:72

11. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using Blueman Bluetooth Manager.

69 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/
https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow

The SenseGlove Unreal Engine Handbook

70/ 461

The SenseGlove Unreal Engine Handbook

Connect to Nova gloves using
Command-line (Bluetooth Serial)

Follow these steps to pair a Nova glove to your PC on GNU/Linux usng command-line
and Bluez:

1. Some Linux distributions include BlueZ in their default installation. If yours
doesn't, install it using the appropriate package manager:

ETS

Gentoo
$ emerge -atuv net-wireless/bluez

Arch, Manjaro
$ sudo pacman -S bluez

Cent0S, Fedora, AlmalLinux, Rocky Linux
$ sudo dnf install bluez

CentOS/RHEL
$ sudo yum install bluez

Debian, Ubuntu
$ sudo apt install bluez

openSUSE
sudo zypper 1install bluez

Solus
$ sudo eopkg install bluez

Void Linux
$ sudo xbps-install -S bluez

Important

To properly set up the Bluetooth stack on your Linux distribution, additional
steps may be required. For example, on Gentoo and Arch consult each
distribution's official guide.

711461

https://wiki.gentoo.org/wiki/Bluetooth
https://wiki.archlinux.org/title/Bluetooth

The SenseGlove Unreal Engine Handbook

2. Run the following command to ensure that BlueZ is installed and check your
bluetoothctl version:

bluetoothctl version
Version 5.77

3. Ensure that the bluetooth service is started and running. For example, on
Gentoo Linux:

$ rc-service bluetooth start
You might see one of these outputs based on whether it's already running or not:

* Starting bluetooth ...
or
* WARNING: bluetooth has already been started

4. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

5. Make sure the glove is turned on.

6. Use bluetoothctl list or bluetoothctl show command to extract your PC's
Bluetooth Controller MAC Address which is useful for later on:

721461

$ bluetoothctl 1list

The SenseGlove Unreal Engine Handbook

Controller CC:15:31:90:69:87 BlueZ 5.77 [default]

$ bluetoothctl show

Controller CC:15:31:90:69:87 (public)

Manufacturer: 0x0002 (2)
Version: Ox0b (11)
Name: BlueZ 5.77
Alias: BluezZ 5.77
Class: Ox007c010c (8126732)
Powered: yes
PowerState: on
Discoverable: no
DiscoverableTimeout: Ox0000003c
Pairable: no
UUID: Message Notification Se..
UUID: A/V Remote Control
UUID: OBEX Object Push
UUID: Message Access Server
UUID: PnP Information
UUID: IrMC Sync
UUID: Headset
UUID: A/V Remote Control Target
UUID: Generic Attribute Profile
UUID: Phonebook Access Server
UUID: Audio Sink
UUID: Device Information
UUID: Generic Access Profile
UUID: Handsfree Audio Gateway
UUID: Audio Source
UUID: OBEX File Transfer
Modalias: usb:v1D6Bp0246d054D
Discovering: no
Roles: central
Roles: peripheral

Advertising Features:
ActiveInstances: 0x00 (0)
SupportedInstances: 0x0c (12)
SupportedIncludes: tx—-power
SupportedIncludes: appearance
SupportedIncludes: local-name
SupportedSecondaryChannels: 1M
SupportedSecondaryChannels: 2M

(60)

(00001133-0000-1000-8000-00805f9b34fb)
(0000110e-0000-1000-8000-00805f9b34fb)
(00001105-0000-1000-8000-00805f9b34fb)
(00001132-0000-1000-8000-00805f9b34fb)
(00001200-0000-1000-8000-00805f9b34fb)
(00001104-0000-1000-8000-00805f9b34fb)
(00001108-0000-1000-8000-00805f9b34fb)
(0000110c-0000-1000-8000-00805f9b34fb)
(00001801-0000-1000-8000-00805f9b34fb)
(0000112f-0000-1000-8000-00805f9b34fb)
(0000110b-0000-1000-8000-00805f9b34fb)
(0000180a-0000-1000-8000-00805f9b34fb)
(00001800-0000-1000-8000-00805f9b34fb)
(0000111f-0000-1000-8000-00805f9b34fb)
(0000110a-0000-1000-8000-00805f9b34fb)
(00001106-0000-1000-8000-00805f9b34fb)

SupportedCapabilities.MinTxPower: Oxffffffde (-34)
SupportedCapabilities.MaxTxPower: Ox0007 (7)
SupportedCapabilities.MaxAdvLen: Oxfb (251)

731461

The SenseGlove Unreal Engine Handbook

SupportedCapabilities.MaxScnRspLen: Oxfb (251)
SupportedFeatures: CanSetTxPower
SupportedFeatures: HardwareOffload

7. Ensure the controller is powered on:

$ bluetoothctl power on

Changing power on succeeded

8. Enable the agent to listen for Bluetooth events that require user interaction,
such as pairing requests and managing device authorizations:

$ bluetoothctl agent on
9. Set the current agent as the default agent:

$ bluetoothctl default-agent

No agent 1is registered
10. Set the controller to be discoverable for 180 seconds:

$ bluetoothctl discoverable on

bluetoothctl discoverable on

hci® new_settings: powered connectable ssp br/edr le secure-conn wide-band-
speech

hci® new_settings: powered connectable discoverable ssp br/edr le secure-conn
wide-band-speech

Changing discoverable on succeeded

Note

To change the default discoverable timeout, you can set it manually using the
bluetoothctl discoverable-timeout command.

741461

The SenseGlove Unreal Engine Handbook
$ bluetoothctl discoverable-timeout 300

Changing discoverable-timeout 300 succeeded
11. Then, make the controller pairable as well:

$ bluetoothctl pairable on

hci® new_settings: powered connectable discoverable bondable ssp br/edr 1le

secure-conn wide-band-speech
Changing pairable on succeeded

12. Begin scanning for devices:

$ bluetoothctl scan on

SetDiscoveryFilter success

13. After a few seconds, list the discovered devices:

bluetoothctl devices

Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device

78:D2:52:42:33:2F
94:3C:C6:47:65:72
AC:F1:08:37:9F:93
70:D6:10:9D:73:8F
TF:2C:8C:8D:09:9F
F9:56:4B:86:1E:13
C9:A3:07:41:91:B0
4F:9D:F8:20:43:F3
CC:B1:1A:2D:A8:A4
AO:D7:F3:76:14:51
5C:17:CF:1D:35:37
E2:F8:03:F6:D8:CB
38:18:4C:E9:69:7A
B8:D6:1A:BA:81:32

78-D2-52-42-33-2F
NOVA-1217-L

LG DSN7CY(93)
70-D6-10-9D-73-8F
7F-2C-8C-8D-09-9F
F9-56-4B-86-1E-13
iLamp

Bedroom

[TV] UE4035500

[TV] Samsung AU7100 75 TV

OnePlus 8 Pro
E2-F8-03-F6-D8-CB
LE_WH-1000XM3
Nova 2 0667-L

Note

If your device is not listed yet, you can run this command multiple times as
bluetoothctl continues the device discovery in the background.

751461

The SenseGlove Unreal Engine Handbook

14. Use the following command to pair with the discoved glove:
$ bluetoothctl pair GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl pair 94:3C:C6:47:65:72

Attempting to pair with 94:3C:C6:47:65:72

[CHG] Device 94:3C:C6:47:65:72 Connected: yes

[CHG] Device 94:3C:C6:47:65:72 Bonded: yes

[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes

[CHG] Device 94:3C:C6:47:65:72 Paired: yes

Pairing successful

Note

If you encounter the Failed to pair: org.bluez.Error.AuthenticationFailed
error message, it might be misleading. Check if there is a line with the glove's
MAC address followed by connected: yes, which indicates that the connection
was actually successful.

Attempting to pair with 94:3C:C6:47:65:72
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
Failed to pair: org.bluez.Error.AuthenticationFailed

15. Mark the device as trusted by issuing the following command:
$ bluetoothctl trust GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl trust 94:3C:C6:47:65:72

[CHG] Device 94:3C:C6:47:65:72 Trusted: yes
Changing 94:3C:C6:47:65:72 trust succeeded

16. Attempt to connect to the glove again:

76 /461

The SenseGlove Unreal Engine Handbook

$ bluetoothctl connect GLOVE_MAC_ADDRESS
For example:

$ bluetoothctl connect 94:3C:C6:47:65:72

Attempting to connect to 94:3C:C6:47:65:72

[CHG] Device 38:18:4C:E9:69:7A RSSI: oxffffffdo (-48)

[CHG] Device 94:3C:C6:47:65:72 Connected: yes

[CHG] Device 94:3C:C6:47:65:72 UUIDs: 00001101-0000-1000-8000-00805f9b34fb
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes

Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable

Note

Again, the error message may be misleading. The connection is often successful
despite the error.

17.If desired, you can extract some information from the glove using:
$ bluetoothctl info GLOVE_MAC_ADDRESS
For example:

bluetoothctl info 94:3C:C6:47:65:72
Device 94:3C:C6:47:65:72 (public)
Name: NOVA-1217-L
Alias: NOVA-1217-L
Class: Ox00001fO0 (7936)
Paired: yes
Bonded: yes
Trusted: yes
Blocked: no
Connected: yes
LegacyPairing: no
UUID: Serial Port (00001101-0000-1000-8000-00805f9b34fh)

18. Create an RFCOMM device:

771461

The SenseGlove Unreal Engine Handbook

$ sudo rfcomm connect /dev/rfcommX GLOVE_MAC_ADDRESS CHANNEL_NUMBER

For example:

$ sudo rfcomm connect /dev/rfcomm®@ 94:3C:C6:47:65:72 1

Connected /dev/rfcomm®@ to 94:3C:C6:47:65:72 on channel 1
Press CTRL-C for hangup

Note
The rfcomm command requires root permision, so it must be run with sudo .
Tip

To determine the channel number, run the following command:

$ sdptool browse GLOVE_MAC_ADDRESS

$ sdptool browse 94:3C:C6:47:65:72
Browsing 94:3C:C6:47:65:72 ...
Service Name: SPP_SERVER
Service RecHandle: 0x10000
Service Class ID List:
"Serial Port" (0x1101)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 1
Profile Descriptor List:
"Serial Port" (0x1101)
Version: 0x010

Note

If you have more than one glove or in general multiple serial Bluetooth devices
connected to your device connected to your PC, then /dev/rfcomme may already
be allocated to another device. In that case, increment the number until finding

781461

The SenseGlove Unreal Engine Handbook

a free rfcomm device. You can query the existing rfcomm devices using the
command: 1s /dev/rfcommx .

19. Follow the SenseCom on GNU/Linux instructions and you should be able to
successfully connect to the newly paired glove from SenseCom.

20. Once the SenseCom is closed and we are done with the gloves, we can
disconnect the gloves using:

$ bluetoothctl disconnect ${SG_DEVICE}
$ sudo rfcomm release ${SG_RFCOMM}

For example:

$ bluetoothctl disconnect 94:3C:C6:47:65:72
$ sudo rfcomm release /dev/rfcomm®

Note

Again, the rfcomm command requires elevated permissions, so it must be run
with the sudo command.

Scripts to Easily Connect and Disconnect from a Glove

You can automate the above tedious process using scripts for connecting and
disconnecting gloves.

sg-connect.sh:

79 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/gnu-linux/

The SenseGlove Unreal Engine Handbook
#!/usr/bin/env sh

CTRL_DEVICE="YOUR_BLUETOOTH_CONTROLLER_MAC_ADDRESS"
SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl pairable on

bluetoothctl discoverable on

bluetoothctl pair ${SG_DEVICE}

bluetoothctl trust ${SG_DEVICE}

bluetoothctl connect ${SG_DEVICE}

rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

sg-disconnect.sh:

#!/usr/bin/env sh

SG_DEVICE="YOUR_SENSEGLOVE_MAC_ADDRESS"
SG_RFCOMM="/dev/rfcommO"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

80/461

The SenseGlove Unreal Engine Handbook

Example Scripts for a Left-Handed Glove

$ cat sg-connect-left.sh
#!/usr/bin/env sh

CTRL_DEVICE="CC:15:31:90:69:87"
SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl pairable on

bluetoothctl discoverable on

bluetoothctl pair ${SG_DEVICE}

bluetoothctl trust ${SG_DEVICE}

bluetoothctl connect ${SG_DEVICE}

rfcomm connect ${SG_RFCOMM} ${SG_DEVICE} 1 &

$ cat sg-disconnect-left.sh
#!/usr/bin/env sh

SG_DEVICE="94:3C:C6:47:65:72"
SG_RFCOMM="/dev/rfcomm@"

bluetoothctl disconnect ${SG_DEVICE}
rfcomm release ${SG_RFCOMM}

Set the executable permissions for all users:
$ chmod a+x sg-connect-left.sh
$ chmod a+x sg-disconnect-left.sh

Before running SenseCom:
$ sudo ./sg-connect-left.sh
Password:

Changing pairable on succeeded
hci® new_settings: powered connectable bondable ssp br/edr le secure-conn
wide-band-speech
hci® new_settings: powered connectable discoverable bondable ssp br/edr le
secure-conn wide-band-speech
Changing discoverable on succeeded
Attempting to pair with 94:3C:C6:47:65:72
Failed to pair: org.bluez.Error.AlreadyExists
Changing 94:3C:C6:47:65:72 trust succeeded
Attempting to connect to 94:3C:C6:47:65:72
81 /461

The SenseGlove Unreal Engine Handbook
hci® 94:3C:C6:47:65:72 type BR/EDR connected eir_len 18
[CHG] Device 94:3C:C6:47:65:72 Connected: yes
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: yes
Failed to connect: org.bluez.Error.NotAvailable br-connection-profile-
unavailable
Run SenseCom in between!
Once SenseCom 1is closed:
$ sudo ./sg-disconnect-left.sh
sudo ./sg-disconnect-left.sh
Password:
Attempting to disconnect from 94:3C:C6:47:65:72
hci® 94:3C:C6:47:65:72 type BR/EDR disconnected with reason 2
[CHG] Device 94:3C:C6:47:65:72 ServicesResolved: no

Successful disconnected
Can't release device: No such device

Video Tutorial

There is also a video tutorial demonstrating how to connect to Nova gloves on
GNU/Linux using the command line.

82 /461

https://youtu.be/Swkk_KmXwq8
https://youtu.be/Swkk_KmXwq8

The SenseGlove Unreal Engine Handbook

83/461

The SenseGlove Unreal Engine Handbook

SenseCom on Microsoft Windows
(Bluetooth Serial)

Follow these steps to quickly set up and run SenseCom on Microsoft Windows:

1. First, obtain the SenseCom binaries from its GitHub repository.

= O Adjuvo / SenseCom Q Type

<> code () Issues '5 11 Pullrequests U Discussions () Actions [Projects 1 0 wiki © security [~ Insi

SenseCom Public < EditPins ~ & Watch

¥ main - ¥ 1Branch © 2 Tags G file Add file ~ <> Code ~

Codespaces
¢ MaxLammers S

Clone
B Android

HTTPS SSH GitHub CLI

B Linux

. ~) it@github.com:Adjuvo/SenseCom.git
B win S m v1.6. gitée L e
[LICENSE

[README.md n ymmit X Open with GitHub Desktop

O READMEmd.bak Open with Visual Studio

[I1 README &8 MIT license

[5] Download ZIP
https://github.com/Adjuvo/SenseCom/archive/refs/heads/main.zip

2. Extract the SenseCom .zip file to a location on your computer after
downloading it.

3. Ensure any glove you would like to pair with and connect to your system is not
paired, or connected to any other device, such as another PC or VR headset.

4, Make sure the glove is powered on.

84 /461

https://github.com/Adjuvo/SenseCom

The SenseGlove Unreal Engine Handbook

5. Access Windows Bluetooth Settings by navigating to Settings > Devices >

Bluetooth & other devices.
Settings

B e Bluetooth & other devices

Gindlasciing d Add Bluetooth or other device

Devices

Related settings

Bluetooth

Bluetooth & other devices ® On

& Now discoverable as "MAMADOU-LEGION-"
Printers & scanners

Mouse

Audio

Touchpad q))) Headphones (Oculus Virtual Audio Device) Help from the web

Typing WH-1000XM3
Paired
AutoPlay

USB Other devices
E 192.168.68.102 - Sonos Play:1
> d
E 192.168.68.116 - Sonos Connect
i ed

E 192.168.68.129 - Sonos Play:1
> d

6. Click on Add Bluetooth or other deviices.

7. In the new window click on Bluetooth.

85/461

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Choose the kind of device you want to add.

)B Bluetooth

Mice, keyboards, pens, or audio and other kinds of Bluetooth devices

Wireless display or dock

Wireless monitors, TVs, or PCs that use Miracast, or wireless docks

Everything else
Xbox controllers with Wireless Adapter, DLNA, and more

Cancel

8. Wait for the glove to be discovered, then click on it.

86 /461

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Make sure your device is turned on and discoverable. Select a device below to
connect.

E Nova 2-03481-L

@ LE_ZWH-1000XM3

E NOVA-1217-L

Cancel

9. Click Connect to connect and pair the glove.

87 /461

The SenseGlove Unreal Engine Handbook

Add a device

Add a device

Make sure your device is turned on and discoverable. Select a device below to
connect.

E Nova 2-03481-L

@ LE_ZWH-1000XM3

E NOVA-1217-L
Connecting

Press Connect if the PIN on NOVA-1217-L matches this one.

773726

Unknown device

Cancel

10. Once the glove is paired, you're good to go. Click on Done.

88 /461

The SenseGlove Unreal Engine Handbook

Add a device

Your device is ready to go!

NOVA-1217-L
Paired

11. Once you are back to Windows Bluetooth settings, verify that the glove is listed
as a paired device.

89 /461

The SenseGlove Unreal Engine Handbook

Settings

B e Bluetooth & other devices

B 192.168.68.140 - Sonos Play:1
Find a setting) B> N ne

Devices 1 192.168.68.141 - Sonos Play:1
N Ne

Bluetooth & other devices i 192.168.68.143 - Sonos SYMFONISK
Ne¢ d

Printers & scanners .
CP2102N USB to UART Bridge Controller

ble

Mouse

NOVA-1217-L
Touchpad Paired

i ™_ Slaapkamer TV
Typing N i

ected
AutoPlay

s 8| Show notifications to connect using Swift Pair

12. After successfully paring your glove, it's time to run SenseCom. Navigate to the
folder where you extracted SenseCom and go to
/path/to/extracted/SenseCom/directory/Win/SenseCom_Win_Latest, and then
run the executable SenseCom.exe.

90/ 461

The SenseGlove Unreal Engine Handbook

n a l < | C:\Users\mamadou\Desktop\SenseCom-main\Win\SenseCom_Win_Latest
Home Share View
. Filg New item ~ B n
i Eas h B cait

New Properties)
folder + e History

SenseCom-main Win SenseCom_Win_Latest

W Name h Date modified Type

Quick access
l MonoBleedingEdge 10/04/2024 11:24 File folder

MW SenseCom_Data 10/04/2024 11:24 File folder
SenseCom.exe 10/04/2024 11:24

& UnityCrashHandler64.exe 10/04/2024 11:24 Application

] UnityPlayer.dll 10/04/2024 11:24 Application extension

il Desktop
Downloads
E Documents
ES Pictures
= This PC
W 3D Objects
i Desktop
E Documents
Downloads
Music

ES Pictures

e WIN1O0 (C)
o Network

& Linux

5items |

Note

Inside the /path/to/extracted/SenseCom/directory/Win/ folder, a SenseCom
installer is available if you wish to permanently install it on your operating
system.

13.In a moment, SenseCom should recognize and connect to your glove(s):

91/461

The SenseGlove Unreal Engine Handbook

. SenseCom 1.6.1 — X

Exit

== Calibrate

K2 ’

Nova-1217-L Right Hand

Important

If you are using SenseCom v1.8.x+ and it fails to recognize your gloves with a
Bluetooth Serial firmware, it may be because the Legacy Connections option is
disabled, which is the default. Enabling this option should allow SenseCom to
discover and connect to your glove.

@ senseCom 1.8.0b — >

Settings SenseCom Settings

Pair Devices Automatic Calibration (@

Connections Legacy Connections ®

Docs Beta Firmware Updates =
Github

Note

92 /461

The SenseGlove Unreal Engine Handbook

For more detailed information and troubleshooting, consult the SenseCom
documentation page on SGDocs, please.

14. At this stage, SenseCom is ready and you should be able to connect to and

communicate with SenseGlove devices from inside your Unreal Engine
applications.

93/461

https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html
https://senseglove.gitlab.io/SenseGloveDocs/sensecom/overview.html

The SenseGlove Unreal Engine Handbook

Enabling XR_EXT_hand_tracking OpenXR
Extension on VR Headsets

Important

Starting from version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. Without this OpenXR
extension the plugin won't output any glove data.

Since version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. Whether you are streaming
your immersive 3D VR application from your PC to your VR headset, or deploying it
to your VR headset in standalone mode, enabling XR_EXT_hand_tracking support,

might require additional plugins or settings depending on the HMD's vendor or
model.

PCVR Mode

For instructions on how to setup XR_EXT_hand_tracking supportin PCVR mode
please refer to the relevant section.

Standalone Mode

For instructions on how to setup XR_EXT_hand_tracking support in standalone mode
on Android please refer to the relevant section.

94 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/

The SenseGlove Unreal Engine Handbook

Third-Party Tutorials

As a part of this OpenXR comprehensive tutorial series, you will learn how to enable
the developer runtime features, set up the OpenXR runtime, and the
XR_EXT_hand_tracking supportin PCVR mode. Furthermore, it will show you how to

enable hand-tracking on Android (standalone mode) using the Meta XR and VIVE
OpenXR plugins.

95/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/third-party-tutorials/

The SenseGlove Unreal Engine Handbook

Enabling XR_EXT_hand_tracking OpenXR
Extension on VR Headsets in PCVR Mode

Starting from version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. If you are streaming your
immersive 3D VR application from your PC to your VR headset, enabling
XR_EXT_hand_tracking support, requires additional plugins and settings depending
on the HMD's vendor or model.

Enabling OpenXR Plugin and Disabling
OpenXRHandTracking Plugin

Regardless of the type or vendor of the HMD you have in mind for development or
deployment purposes, the openxrR plugin is required as a prerequisite. Also, ensure
the openxRHandTracking is disabled as it conflicts with the SenseGlove Unreal Engine
Plugin since both implement the same XR_EXT_hand_tracking OpenXR extension.

Though enabling the SenseGlove Unreal Engine Plugin should enable the openXR
plugin automatically, it is recommended to ensure this plugin is enabled, and most
importantly openXRHandTracking is disabled, by navigating to Edit > Plugins inthe
Unreal Editor menus.

96 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

» File Edit Window T
(Ar) ‘
% plugins
+ Add X openxr L+ Settings

All Plugins
@ ALL PLUGINS

~_ HP Motion Controller Version 1.0
PROJECT) Controller mappings for the HP Reverb G2 motion controller in {JiEg and SteamVR Microsoft Corporation x

Virtual Reality

INSTALLED g Version 1.0
@ Open\’AR, @JsE45] is an open VR/AR standard Epic Games, Inc. 5
~odecs

Virtual Reality

BUILT-IN 595 P vision0s Bea Version 1.0
‘4 OS5 visionOS exposes visionOS full immersion to Unreal as if it was an [@]sf2ahdal runtime Epic Games, Inc. x

Documentation on developing VR in Unreal with @JS2043 is applicable
lity

Advertising EyeTracker Version 1.0
Al Open\,(R, (OJ:EDd5! Eye Tracker provides XR_EXT_eye_gaze_interaction support. Epic Games, Inc. x

Analytics
Android

Android Background Service HandTracking Version 1.0
Animation 33 @XR (WS4 Hand Tracking provides XR_EXT_hand_tracking support. Epic Games, Inc. x

Audio
Augmented Reality .
BackgroundHTTP MsftHandInteraction Version 1.0

QpoexR. YLakiMsftHandinteraction provides support for the XR_MSFT_hand_interaction RS Extension Epic Games, Inc. x
BlendSpace This allows hand tracking to act as a motion controller.

Blueprints

Build Distribution 3 q 3
° , iveTracker (Beta Version 1.0
Cameras @paXR. YR Vive Tracker provides XR_HTCX_vive_tracker_interaction. s,

The openxRHandTracking plugin implements the XR_EXT_hand_tracking OpenXR
extension.

Meta Quest

To set up XR_EXT_hand_tracking support on Meta Quest HMDs in PCVR mode,
depending on your project requirements (e.g. whether you rely on the Meta XR
plugin or not), additional setup steps are required.

Meta Quest Link App

For Meta Quest headsets, enable the Developer runtime features under the
Settings > Beta section inside the Meta Quest Link app:

97 /461

The SenseGlove Unreal Engine Handbook

Search
Home

Store Account Privacy Payment General Beta
Library Restart Meta Quest Link

Restarting Meta Quest Link will reboot all of your Meta Quest Link software.
Events

Devices Public Test Channel
Receive future Public Test Channel releases. Learn more.
Settings

Demo Mode
Start demo mode so that your Meta Quest Link library will only display apps that Start
you select.

Developer runtime features

Enables runtime features for developers such as OpenXR extensions which require o
Meta Quest Link.

Pass-through over Meta Quest Link
Enables Pass-through over Meta Quest Link. Camera images will be processed on the @
host PC.

Follow list
Eye tracking over Meta Quest Link

Notifications Enables eye tracking over Meta Quest Link. Abstracted gaze data will be processed on @
the host PC.

Help Centre

Important

Enabling Developer runtime features in the Meta Quest Link requires a Meta
Developer Account. If you are not signed in using a Meta Developer Account,
this option won't be shown to you inside Meta Quest Link.

Caution

Streaming to Meta Quest headsets from SteamVR is no longer supported
because the migration to OpenXR has caused controller offsets for Meta Quest
HMDs to break on SteamVR. One possible reason is that SteamVR lists
XR_FB_hand_tracking as an unsupported feature. Further investigation is
needed to identify the exact underlying cause.

98 /461

https://developers.facebook.com/docs/development/register/
https://developers.facebook.com/docs/development/register/
https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/
https://steamcommunity.com/app/250820/discussions/8/3121550424355682585/

The SenseGlove Unreal Engine Handbook

Meta XR Plugin

Caution

Please note that enabling the meta xR plugin alongside the SenseGlove plugin
will result in crashes or unexpected behavior. Meta XR plugin compatibility is
being worked on and might be supported in the future.

HTC VIVE

To set up XR_EXT_hand_tracking support on HTC VIVE HMDs in PCVR mode,
additional plugins or configuration steps are required.

OpenXRViveTracker Plugin

To enable VIVE Trackers support ensure the openxRviveTracker plugin is enabled by
navigating to Edit > Plugins in the Unreal Editor menus. This plugin should be
enabled, or wrist tracking won't function on VIVE devices at all.

99 /461

The SenseGlove Unreal Engine Handbook

File Edit Window Tools

|
) ¥ Plugins x

+ Add X openxr L} Settings

All Plugins

8 ALL PLUGINS . S
S HP Reverb G2 motion controller in @243l and SteamVR Microsoft Corporation x

PROJECT

Virtual Reality Version 1.0
{45! is an open VR/AR standard Epic Games, Inc. x

INSTALLED 3

Codecs

Virtual Reality on0S (Beta Version 1.0
(O3] visionOS exposes visionOS full immersion to Unreal as if it was an @JSai2ds) runtime. Epic Games, Inc. x
BUILT-IN 595 Documentation on developing VR in Unreal with JJZ43] is applicable

lity 3 EyeTracker Version 1.0
Advertising (OE04E] Eye Tracker provides XR_EXT_eye_gaze_interaction support. Epic Games, Inc. 5

Al

Analytics 5 .

Android 3 HandTracking Version 1.0
: W43 Hand Tracking provides XR_EXT_hand_tracking support. Epic Games, Inc. x

Android Background Service :

Animation

Audio 3 g

MsftHandlInteraction Version 1.0
Augmented Reality (O%\’AR WEREiMsftHandInteraction provides support for the XR_MSFT_hand_interaction S]] Extension. Epic Games, Inc. 5
BackgroundHTTP This allows hand tracking to act as a motion controller

BlendSpace

Blueprints 5 iveTracker (BE Version 1.0
Build Distribution 3 . WG Vive Tracker provides XR_HTCX_vive_tracker_interaction: Epic Games, Inc

Cameras

The OpenXRViveTracker plugin implements the XR_HTCX_vive_tracker_interaction
OpenXR extension which is necessary to use VIVE Trackers or to emulate the VIVE
Wrist Trackers as VIVE Trackers on Windows.

VIVE Business Streaming App

For VIVE headsets relying on the VIVE Business Streaming application, ensure the
Hand Tracking settings under Input are enabled and
XR_HTCX_vive_tracker_interaction is enabled for VIVE Wrist Trackers by enabling
Emulate VIVE Wrist Tracker as VIVE Tracker :

100/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#vive-business-streaming-app
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#vive-business-streaming-app

The SenseGlove Unreal Engine Handbook

Setti ngs Controller

Compatibility mode
General
Performance Tracking

Hand tracking

Graphics _
Hand and controller at the same time

Input VIVE Ultimate Tracker

Advanced Fallback to Vive Tracker
About Stream avatar data to VRChat via OSC
Eye and facial tracking data
VIVE Wrist Tracker
Use VIVE Wrist Tracker for hand tracking
Emulate VIVE Wrist Tracker as VIVE Tracker

VIVE Business Streaming 2.2.4

Standing by

92.168.2.1,

Note

Tracking and accessing FXRMotionControllerData output from SenseGlove
devices do not require Hand and Body Tracking to be enabled on the HMD
device. Enabling this feature is only necessary if you wish to use hand-tracking
as a fallback option when no glove is connected to your PC.

SteamVR App

After enabling the OpenXRViveTracker plugin and enabling Emulate VIVE Wrist
Tracker as VIVE Tracker for VIVE HMDs relying on the VIVE Business Streaming, you
need to perform one final setup in the SteamVR app for the SenseGlove Unreal
Engine Plugin to be able to retrieve the correct wrist-tracking offsets. Once you have
paired your VIVE Trackers or VIVE Wrist Trackers, navigate to SteamVR Settings >
Controllers > MANAGE TRACKERS and make sure your left tracker is set to LEFT FOOT
and the right tracker is set to RIGHT FOOT:

101/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#openxrvivetracker-plugin
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#vive-business-streaming-app
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#vive-business-streaming-app

The SenseGlove Unreal Engine Handbook

Vive Trackers

I/devices/htc_business_streaming/TKR_LEFT IDENTIFY TRACKER

Tracker Role LEFT FOOT

I/devices/htc_business_streaming/TKR_RIGHT IDENTIFY TRACKER

Tracker Role RIGHT FOOT

Now Playing

SteamVR Home

—

SenseGlove Wrist Tracking Settings

Once you have set up everything, it's time to adjust the SenseGlove Wrist Tracking
Settings inside the project-wide plugin's settings. For detailed information, please
visit the Wrist Tracking Hardware and HMD auto-detection configuration section as
well.

102/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

The SenseGlove Unreal Engine Handbook

Enabling XR_EXT_hand_tracking OpenXR
Extension on VR Headsets in Standalone
Mode

Starting from version v2.1.0, the SenseGlove Unreal Engine Plugin requires the
XR_EXT_hand_tracking OpenXR extension to function. If you are deploying your
immersive 3D VR application to your VR headset in standalone mode, enabling
XR_EXT_hand_tracking support, requires additional plugins and settings depending
on the HMD's vendor or model.

Enabling OpenXR Plugin and Disabling
OpenXRHandTracking Plugin

Regardless of the type or vendor of the HMD you have in mind for development or
deployment purposes, the openxrR plugin is required as a prerequisite. Also, ensure
the openXRHandTracking is disabled as it conflicts with the SenseGlove Unreal Engine
Plugin since both implement the same XR_EXT_hand_tracking OpenXR extension.

Though enabling the SenseGlove Unreal Engine Plugin should enable the OpenxR
plugin automatically, it is recommended to ensure this plugin is enabled, and most
importantly openxRHandTracking is disabled, by navigating to Edit > Plugins inthe
Unreal Editor menus.

103 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

» File Edit Window Tools Help
(Aar) ‘
% plugins x
+ Add X openxr L+ Settings
All Plugins
@ ALL PLUGINS
~_ HP Motion Controller Version 1.0

PROJECT %” Controller mappings for the HP Reverb G2 motion controller in SfEmd and SteamVR Microsoft Corporation x

Virtual Reality

INSTALLED Version 1.0
Open\’AR, @JsE45] is an open VR/AR standard Epic Games, Inc. 5

Codecs

Virtual Reality

BUILT-IN P vision0s Bea Version 1.0
‘4 OS5 visionOS exposes visionOS full immersion to Unreal as if it was an [@]sf2ahdal runtime Epic Games, Inc. x

Documentation on developing VR in Unreal with @JS2043 is applicable
lity

Advertising EyeTracker Version 1.0
Al Open\,(R, (OJ:EDd5! Eye Tracker provides XR_EXT_eye_gaze_interaction support. Epic Games, Inc. x

Analytics
Android

Android Background Service HandTracking Version 1.0
i atien 33 @XR (WS4 Hand Tracking provides XR_EXT_hand_tracking support. Epic Games, Inc. x

Audio

Augmented Reality 8 .
S T MsftHandInteraction Version 1.0

QpoexR. YLakiMsftHandinteraction provides support for the XR_MSFT_hand_interaction RS Extension Epic Games, Inc. x
BlendSpace This allows hand tracking to act as a motion controller.

Blueprints

Build Distribution 3 q 9
° iveTracker (Beta Version 1.0
Cameras @paXR. YR Vive Tracker provides XR_HTCX_vive_tracker_interaction. Epic Games, Inc.

The openxRHandTracking plugin implements the XR_EXT_hand_tracking OpenXR
extension.

Meta Quest

To set up XR_EXT_hand_tracking support on Meta Quest HMDs in Standalone mode,
depending on your project requirements (e.g. whether you rely on the Meta XR
plugin or not), additional setup steps are required.

Important

Although, the SenseGlove plugin does not require the Meta xR plugin to
function, and relying solely on the OpenXR and OpenXRHandTracking plugins
would suffice for functional glove data retrieval using OpenXR, hand-tracking as
a fallback mechanism won't work on Android without the Meta xR plugin
availability.

104/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/#bfallbacktohandtrackingifnoglovedetected
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/#bfallbacktohandtrackingifnoglovedetected

The SenseGlove Unreal Engine Handbook

Meta XR Plugin

Caution

Please note that enabling the meta xR plugin alongside the SenseGlove plugin
will result in crashes or unexpected behavior. Meta XR plugin compatibility is
being worked on and might be supported in the future.

HTC VIVE

To set up XR_EXT_hand_tracking support on HTC VIVE HMDs in Standalone mode,
additional plugins or configuration steps are required.

Caution

The SenseGlove Unreal Engine Plugin v2.7.x is the last release series to
support Unreal Engine 5.4, and its support will be removed in future minor or
major releases. This is important to keep in mind if your target development
and deployment platform is HTC VIVE in Standalone Mode. Unfortunately, HTC
has not released any updates to their HTC ViveOpenXR plugin since December
6, 2024. Their latest release [1] [2], ViveOpenXR Plugin v2.5.0, supports only
Unreal Engine 5.3 and 5.4 . HTCVIVE PCVR Mode is unaffected and will remain
fully functional because, on Microsoft Windows, it is supported via the
OpenXRViveTracker Plugin, which is bundled with Unreal Engine and officially
maintained by Epic Games. If you still intend to target HTC in Standalone Mode,
you are welcome to continue using the latest SenseGlove Unreal Engine Plugin
v2.7.x, which will retain HTC Standalone Mode support. However, please keep
in mind that once newer versions of the SenseGlove Unreal Engine Plugin are
released and UE 5.4 is no longer supported, the latest release of the plugin
supporting UE 5.4 will not receive new features, hardware support, or bug
fixes. If at any point in the future HTC releases a new version of their
ViveOpenXR plugin that supports any Unreal Engine version we actively
support,+in accordance with our support policy and Platform Support Matrix,

105/ 461

https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://web.archive.org/web/20251113165658/https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://archive.ph/DlrLr
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#openxrvivetracker-plugin
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html

The SenseGlove Unreal Engine Handbook

we will make every reasonable effort to reintroduce HTC Standalone Mode
support.

OpenXRViveTracker Plugin

Unlike the PCVR-mode on Windows, the OpenxRviveTracker plugin is not required on
Android since it only provides an implementation of the
XR_HTCX_vive_tracker_interaction OpenXR extension which is necessary when we
use VIVE Trackers on Windows or we emulate the VIVE Wrist Trackers as VIVE
Trackers on Windows. Instead, we require the
XR_HTCX_vive_wrist_tracker_interaction OpenXR extension to be able to use VIVE
Wrist Trackers on Android, which is provided by the viveopenxrR plugin. So, you can
safely ignore enabling this plugin for Android standalone deployments.

ViveOpenXR Plugin

To enable VIVE Wrist Trackers support ensure the viveopenxR plugin is enabled by
navigating to Edit > Plugins in the Unreal Editor menus. This plugin should be
enabled, or wrist tracking won't function on VIVE devices at all.

106 / 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#vive-business-streaming-app
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#vive-business-streaming-app
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/index.html#viveopenxr-plugin

» File Edit Window T
(Ar))
% plugins

-+ Add X openxr

7 ALL PLUGINS

PROJECT
Virtual Reality
INSTALLED

Codecs
Virtual Reality

BUILT-IN

lity
Advertising
Al
Analytics
Android
Android Background Service
Animation
Audio
Augmented Reality
BackgroundHTTP
BlendSpace
Blueprints
Build Distribution

Cameras

All Plugins

GpePXR

GrodXR.

G XR.

The SenseGlove Unreal Engine Handbook

{oJs2¥451 is an open VR/AR standard

ision0S (Beta
OpenXR| 0S exposes vision0S full immersion to Unreal as if it was an [§Js390dal runtime
Documentation on developing VR in Unreal with BJ¥390d5 is applicable

EyeTracker
{OJ345] Eye Tracker provides XR_EXT_eye_gaze_interaction support

HandTracking
{OJ343 Hand Tracking provides XR_EXT_hand_tracking support.

MsftHandInteraction
ftHandInteraction provide port for the XR_MSFT_hand_interaction @324l Extension.
hand tracking to act a: otion controller

iveTracker (Beta
OJSG] Vive Tracker provides XR_HTCX_vive_tracker_interaction

Vive
Features of VIVE [oJs30V4!

Edit & Package 4 Documentation @ Support

L+ Settings

version 1.u
Epic Games, Inc. x

Version 1.0
Epic Games, Inc. x

Version 1.0
Epic Games, Inc. x

Version 1.0
Epic Games, Inc.

Version 1.0
Epic Games, Inc. x

Version 1.0
Epic Games, Inc

Version 2.5.0

HTC Corporation 5

The viveOpenxR plugin implements the XR_HTCX_vive_wrist_tracker_interaction

OpenXR extension.

Important

app.

Without the viveopenxrR plugin deploying an immersive 3D VR application to
your HTC VIVE in Standalone mode won't be possible, whether you enable
bStartInVR, or not. Without it your app will be deployed and recognized as a 2D

By default, the viveOpenXR plugin settings located in Edit > Project Settings >
Plugins > Vive OpenXR look something like these:

107 / 461

The SenseGlove Unreal Engine Handbook

& Project Settings

Xcode Projects Q

Plugins Plugins - Vive OpenXR
AndroidFileServer EXpOIE lInport
AVF Media o These settings are saved in DefaultEngine.ini, which is currently writable
Dataflow
Overvew
Fracture Mode
Gameplay Cameras Editor
Controller
Geometry Cache
GooglePAD
IMG Media

Enable Focus3 Controller

Enable Cosmos Controller

simuftaneous Interaction
Interactive Tool Presets

Enable Simultane
Level Sequence Editor ©

Live Link Hand Interaction

Live Link Component Enable Hand Interaction

Live Link Sequence Editor Advanced

Meta XR

Mixed Reality Utility Kit Tracker

Modeling Mode Tools Enable Wrist Tracker
Niagara Enable Ultimate Tracker (Beta)
Niagara Editor Advanced

OpenXR Settings

OpenXRHandTracking HTC Eye Tracker

Faper 2D WARNING: Enable HTC Eye Tracker will conflict with OpenXREyeTracker plugin. Please disable OpenXREyeTracker plugin if HTC Eye Tracker feature is enabled
Python

Enable HTC Eye Tracker (Beta)
RenderDoc

Facial Tracking
Resonance Audio

Enable Facial Tracking
SenseGlove ‘

Rend
Take Recorder tendering

TCP Messaging Enable Sharpening (Beta)
Template Sequence Editor
UDP Messaging

Vive OpenXR Passthrough

WMF Media Enable Passthrough

& Project Settings

Xcode Projects Q

Pl ugins Enable Cosmos Controller
TSR E Simutancous Interaction
AVF Media Enable Simultaneous Interaction
Dataflow Hand Interaction
Fracture Mode Enable Hand Interaction
Gameplay Cameras Editor Advanced
Geometry Cache
GooglePAD Tracker
IMG Media Enable Wrist Tracker
Interactive Tool Presets Enable Ultimate Tracker (Beta)
Level Sequence Editor p—
Live Link
Live Link Component peesm——
Live Link Sequence Editor
Meta XR
Mixed Reality Utilty Kit Enable HTC Eye Tracker (Beta)
Modeling Mode Tools Facial Tracking

Niagara Enable Facial Tracking

WARNING: Enable HTC Eye Tracker will conflict with OpenXREyeTracker plugin. Please disable OpenXREyeTracker plugin if HTC Eye Tracker feature is enabled

Niagara Editor Rendering

OpenXR Settings Enable Sharpening (Beta)
OpenXRHandTracking

Paper 2D

Python Passthrough
RenderDoc Enable Passthrough
Resonance Audio
SenseGlove

Take Recorder e —

TCP Messaging Enable Anchor (Beta)

T Seves S Enable Plane Detection
UDP Messaging
Vive OpenXR

WMF Media

Enable Scene Understanding
Display Refresh Rate.

Enable Display Refresh Rate

The following settings control the availability of hand-tracking when the ViveOpenxR
plugin is enabled:

108 /461

The SenseGlove Unreal Engine Handbook

e Enable Hand Interaction: This enables the hand interactions with the OpenXR
hand interaction extension XR_HTC_hand_interaction.Changing this setting will
prompt you to restart the engine to apply the new settings. This setting should
be enabled.

¥ Project Settings

Q

Plugins - Vive OpenXR

Export Import

Plugins

HTC Eye Tracker

WARNING

UDP Messaging
Restart required to apply new
settings

Restart Now Restart Later

e Use HTC Hand Interaction: This selects which OpenXR hand interaction
extension to use. If enabled, XR_HTC_hand_interaction will be used, effectively
breaking SenseGlove glove and hand-tracking data output. If disabled,
XR_EXT_hand_interaction will be used, which is compatible with the SenseGlove
Unreal Engine Plugin. Changing this setting will prompt you to restart the
engine to apply the new settings. This setting should be disabled.

The following settings control the availability of wrist-tracking when the viveOpenXR
plugin is enabled:

e Enable Wrist Tracker: This option controls the
XR_HTC_vive_wrist_tracker_interaction OpenXR extension. If enabled, in turn,
it enables the use of HTC Wrist Tracker interaction profiles in OpenXR. Changing
this setting will prompt you to restart the engine to apply the new settings.

109 /461

The SenseGlove Unreal Engine Handbook

Q

Plugins - Vive OpenXR

Export Import
de Pr

. o T
Plugins

HTC Eye Tracker

WARNING:

Restart required to apply new
settings

Restart Now Restart Later

e Enable Ultimate Tracker (Beta): This option controls the
XR_HTC_path_enumeration and XR_HTC_vive_xr_tracker_interaction OpenXR
extensions. If enabled, in turn, they enable the use of HTC Xr Tracker interaction
profiles in OpenXR. Changing this setting will prompt you to restart the engine
to apply the new settings.

e Enable Ultimate Tracker Pogo Pin Inputs (Beta): Enables or disables the input
options for Unreal's Enhanced Input System. Changing this setting will prompt
you to restart the engine to apply the new settings.

The following setup demonstrates a functional immersive 3D VR application with the
minimum ViveOpenXR required features enabled to make it compatible with the
SenseGlove Unreal Engine Plugin:

110/ 461

The SenseGlove Unreal Engine Handbook

¥ Project Settings

i0s Ql
i0S Material Quality

e Plugins - Vive OpenXR

Mac Import
Windows of These settings are saved in DefaultEngine.ini, which is currently writable.

Xcode Projects
Overview

Plugins
AndroidFileServer Controller
AVF Media Enable Focus3 Controller
Dataflow Enable Cosmos Controler
Fracture Mode Simultaneous Interaction
Gameplay Cameras Editor Enable Simultaneous Interaction
Geometry Cache Hand Interaction
GooglePAD Enable Hand Interaction
IMG Media Advanced
Interactive Tool Presets Use HTC Hand Interaction
Level Sequence Editor Tracker
Live Link Enable Wrist Tracker
Live Link Component Enable Ultimate Tracker (Beta)
Live Link Sequence Editor pr—
Modeling Mode Tools
Bisgats HTC Eye Tracker
Niagara Editor
X WARNING: Enable HTC Eye Tracker will conflict with OpenXREyeTracker plugin. Please disable OpenXREyeTracker plugin if HTC Eye Tracker feature is enabled
OpenXR Settings
Paper 2D Enable HTC Eye Tracker (Beta)
Python Facial Tracking
RenderDoc Enable Facial Tracking
Resonance Audio Rendering
SenseGlove Enable Sharpening (Beta)
Take Recorder
TCP Messaging
Template Sequence Editor Passthrough
UDP Messaging Enable Passthrough

& Project Settings

i08 Q
i0S Material Quality

Enable Cosmos Controller
Linux

Simuitaneous Interaction
Ma

Enable Simultaneous Interaction
Windows

Hand Interacti
Xcode Projects jand Interaction

Enable Hand Interaction

Plugins e
AndroidFileServer Use HTC Hand Interaction

AVF Media Tracker

Dataflow Enable Wrist Tracker

Fracture Mode Enable Ultimate Tracker (Beta)

Gameplay Cameras Editor e

Geometry Cache
GooglePAD

HTC Eye Tracker

IMG Media

WARNING: Enable HTC Eye Tracker will conflict with OpenXREyeTracker plugin. Please disable OpenXREyeTracker plugin if HTC Eye Tracker feature is enabled
Interactive Tool Presets

Level Sequence Editor Enable HTC Eye Tracker (Beta)
Live Link Facial Tracking

Live Link Component Enable Facial Tracking

Live Link Sequence Editor Rendering

Modeling Mode Tools Sharpening (Beta)
Niagara

Niagara Editor

OpenXR Settings EEEDD

Paper 2D Enable Passthrough
Python

RenderDoc

Resonance Audio [r—

nseGlove
= Enable Anchor (Beta)
Take Recorder
Enable Plane Detection
TCP Messagin
= Enable Scene Understanding
Template Sequence Editor
Display Refresh Rate
UDP Messaging
Display Refresh Rate

111/ 461

The SenseGlove Unreal Engine Handbook

SenseGlove Wrist Tracking Settings

Once you have set up everything, it's time to adjust the SenseGlove Wrist Tracking
Settings inside the project-wide plugin's settings. For detailed information, please
visit the Wrist Tracking Hardware and HMD auto-detection configuration section as

well.

112/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

The SenseGlove Unreal Engine Handbook

Third-Party Tutorials:
XR_EXT_hand_tracking Setup

Introduction to Virtual Reality, OpenXR Hand-
Tracking, and Gesture Detection in Unreal Engine

A part of this comprehensive tutorial will guide you through setting up the OpenXR
runtime and enabling developer runtime features:

Unreal Engine OpenXR Hand-Tracking on Android
with Meta XR (Quest 3S/3/Pro/2) and HTC VIVE
OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

A part of this comprehensive tutorial will guide you through setting up the Meta XR

and VIVE OpenXR plugins for Android standalone-mode deployment:

113 /461

The SenseGlove Unreal Engine Handbook

114/ 461

The SenseGlove Unreal Engine Handbook

Setting Up the SenseGlove Default
Classes

Setting up the default SenseGlove classes is recommended if you want to take full
advantage of the quality-of-life features provided by the SenseGlove Unreal Engine
Plugin. These features are designed to streamline the development process within
the Unreal Engine environment. For instance, if you need a quick setup with a virtual
hand mesh already integrated into a pawn, enabling you to get started with your
project in just a few minutes, it is essential to configure the default classes and
familiarize yourself with these classes.

If you wish to extend the functionality of these classes, you can do so by subclassing
them. The default SenseGlove classes, which are prefixed with sG, include:

e SGGameModeBase

e SGPawn
SGPlayerController
SGGamelnstance
SGGameUserSettings

However, if you prefer a different approach or do not require the functionality
provided by the default SenseGlove classes, you can opt to utilize individual
components like SGVirtualHandComponent, SGWristTrackerComponent, etc., directly
within your own actors. Alternatively, you can develop a completely custom system
from scratch, leveraging the low-level SenseGlove C++ or Blueprint APIs.

Additionally, you can enforce setting the default SenseGlove classes during
initialization via the plugin settings, if desired.

115/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/ggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/low-level-api/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/

The SenseGlove Unreal Engine Handbook

Setting Up SGGameModeBase

After installing and enabling the SenseGlove Unreal Engine Plugin, the easiest and
most straightforward approach to get started is to just set the default GameMode to
SGGameModeBase from Edit > Project Settings... > Maps & Modes > Default Mode >
Default GameMode . By doing this, the Default Pawn Class is automatically set to
SGPawn , and the Player Controller Class is setto SGPlayerController . This setup
ensures that a SenseGlove pawn will automatically spawn when you hit the play
button in the editor.

u & Project Settings
All Settings Ql

Project Project - Maps & Modes

Description Export... Import...

Encryption uh These settings are saved in DefaultEngine.ini, which is currently writable
GameplayTags
Default Modes
» Maps & Modes
Movies
Packaging
Supported Platforms

Target Hardware

Game

Asset Manager Default Maps
Asset Tools

Editor Startup Map

Engine
Al System

Editor Template Map Oy

Animation -

Game Default Map
Animation Modifiers
Audio Advanced
Chaos Solver Local Multiplayer

Cinematic Camera

C
Control Rig

Tip

For greater control and customization, consider extending the
SGGameModeBase.

Note

116 / 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/plugin-verify-version-enable/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html#extending-sggamemodebase

The SenseGlove Unreal Engine Handbook

Currently, setting SGGameModeBase Or a subclass of it as the Default GameMode is
not a strict requirement. Its primary function is to ensure that a default sGpawn
and sGPlayerController are set. However, this might change in the future, and
it could become a mandatory setting.

Important

While setting SGGameModeBase as the Default GameMode will automatically spawn
the default SGPawn at BeginPlay and initiate communication with the
SenseGlove devices, it will not display any virtual hands in your simulation by
default. You might still need to configure the Virtual Hand Meshes and the Wrist
Tracking Hardware separately.

Important

Before starting the simulation in the editor, make sure that SenseCom is
running and XR_EXT_hand_tracking is enabled. Without these, your simulation
will not receive hand pose data from the SenseGlove devices.

Extending SGGameModeBase

Follow these steps to extend and set up your own version of SGGameModeBase :

1.In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

117 / 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/

The SenseGlove Unreal Engine Handbook

ective @ Lit 0 - &) € 1004 10°] 2 025 1 /6B
4

R Shectage,

|-
(o}

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

New Folder

- .
=(_ Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

— hold (Ctrl + Alt) for more

A Level

@ Material

: Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Bluepri 4} Settings

Blueprint

Favorites . .
Cinematics

SGHandb Editor Utilities
All Foliage
> FX
Gameplay

FPV Input

L':“V_‘ Live Link

VRS

yRT Material p here or right cl
AU Media
B
H:
In Paper2D
M Physics
M
G

Miscellaneous

Texture
Collectior ool Presets
User Interface

ntL World

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

118/ 461

COMMON

© Actor

Pawn

x
& Character

Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGGameModeBase in the
Search box. When SGGameModeBase appears, select it and click the Select
button to create your new Blueprint class based on it.

119/ 461

The SenseGlove Unreal Engine Handbook

Pick Parent Class

v COMMON

An Actor is an object that can be placed or spawned in the

@ Actor
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn :
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

AL e el G Pawn used by the player.

Game Mode Base defines the game being played, its rules,

40}
& i
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

[*{ Actor Component added to any actor.

A Scene Component is a component that has a scene

n
| e SRR transform and can be attached to other scene ...

w ALL CLASSES

¥ SGGameModeBase
@& Object
@ Actor
@ Info
GameModeBase

SGGameModeBase

5 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

120/ 461

The SenseGlove Unreal Engine Handbook

5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

= Q

» Favorites Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on

Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

-V

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
im FPWeapon -+
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGGameMode

1 item

B5 Content Drawer M Output Log Cmd v

121/461

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameModeBase as the Default
GameMode . YOu can do this by navigating to Project Settings > Project > Maps
& Modes > Default Modes > Default GameMode .

& Project Settings
All Settings Q

Project Project - Maps & Modes

Description Export... Import...

Encryption o' The ed in DefaultEngine.ini, whick urrently writable
GameplayTags

Maps & Modes

Default Modes
Default G e de v €5 ®

Sels

Movies
Packaging
Advanced

Supported Platforms

Target Hardware

Game
Manager

Ta
Slate RHIRenderer Settings CH 3
Widget State Settings

Editor Template Map 0 Array element

Engine
Al System

e Default Map

Animation Advanced

Animation Modifiers Local Multiplayer

Audio plit

Ch. olver o Player en Layout
Cinematic Camera ee Pla ol 1 Layout

Four Plaver en Lavout

122/ 461

The SenseGlove Unreal Engine Handbook

Setting Up SGPawn

Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set sGPawn as the Default Pawn Class by navigating to Project
Settings > Project > Maps & Modes > Default Modes > Selected GameMode > Default
Pawn Class .However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode and
setting the Default Pawn Class directly from there. Once set, click on the cCompile
button and save your game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - m] X

()
BP_SGGameModex x SGGame Mode Base

o) [@) =§i Compile : = Q' Diff v L+ Class Settings | #2 Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name
Game Mode
Public View
5 Content Drawer 8 Output Log Cmd v & 1Unsaved £ Revision Control v

Tip

For greater control and customization, consider extending the SGPawn.

Caution

Setting sGPawn or a subclass of it as the Default Pawn Class without setting
SGPlayerController or a subclass of it as the default player Controller Class

123 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html#extending-sgpawn
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html

The SenseGlove Unreal Engine Handbook

will cause the sGpawn to not function properly. So, it's a strict requirement.

Important

To have a fully functional sGpawn, simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Extending SGPawn

Follow these steps to extend and set up your own version of SGPawn :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

124/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

ective @ Lit 0 - — &) € 1004 10°] 2 025 1 /6B
4

R Shectage,

|-
(o}

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

New Folder

- .
=(_ Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

— hold (Ctrl + Alt) for more

A Level

@ Material

: Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Bluepri 4} Settings

Blueprint

Favorites . .
Cinematics

SGHandb Editor Utilities
All Foliage
> FX
Gameplay

FPV Input

L':“V_‘ Live Link

VRS

yRT Material p here or right cl
AU Media
B
H:
In Paper2D
M Physics
M
G

Miscellaneous

Texture
Collectior ool Presets
User Interface

ntL World

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

125/ 461

The SenseGlove Unreal Engine Handbook

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
& Character

A Player Controller is an actor responsible for controlling a

Player Controller Pawn used by the player.

Game Mode Base defines the game being played, its rules,

Calie L bale s scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

(| - E O SO e added to any actor.

A Scene Component is a component that has a scene

A
ts Scene Component transform and can be attached to other scene ...

ALL CLASSES

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGPawn in the Search box.
When sGPawn appears, select it and click the Select button to create your new
Blueprint class based on it.

126/ 461

v COMMON

© Actor

Pawn

x
@ Character

&q Player Controller

Game Mode Base
[#] Actor Component
A+, Scene Component

w ALL CLASSES
% SGPawn

@ Object
@® Actor
£ Pawn
b JSGPawn

4 items

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Select Cancel

4, After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the

context menu.

127/ 461

The SenseGlove Unreal Engine Handbook

5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

= Q

» Favorites Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on

Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

-V

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
i FPWeapon
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGPawn

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

128 /461

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGPawn as the Default Pawn Class.
Depening on the Unreal Engine version and your project's type and
configuration, you might be able do this by navigating to Project Settings >
Project > Maps & Modes > Default Modes > Selected GameMode > Default Pawn
Class . However, regardless of the engine version or project type and
configuration, you can always configure this by opening your Default GameMode
and setting the Default Pawn Class directly from there. Once set, click on the
Compile button and save your game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - (m] X

(Ar)
BP_SGGameModex x SGGame Mode Base

= i@ Compile i =g Diff v L} Class Settings | # Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name

Game Mode

Public View
= 1Unsaved 3 Revision Control v

5 Content Drawer | Output Log Cmd v

Important

To have a fully functional sGPawn, simply setting it up is not enough. You still
need to setup the Virtual Hand Meshes and setup the Wrist Tracking Hardware.

Customizing SGPawn

Customizing the sGpawn after subclassing is straightforward and flexible.

129 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The

The SenseGlove Unreal Engine Handbook

sGPawn class includes several key subcomponents:

Wrist Tracker Left and Wrist Tracker Right of type
SGWristTrackerComponent .

HandLeft and HandRight of type SGVirtualHandComponent and represent the
virtual hand models visible to the user in the simulation.

RealHandLeft and RealHandRight Of type SGVirtualHandComponent . By default,
these are hidden and represent the real hands within the simulation. These
components are useful if you need to separate the rendering of the virtual
hands from the real hands. For instance, the virtual hands typically have

collisions and cannot pass through objects, while the real hands are not
constrained in this way.

130/ 461

The SenseGlove Unreal Engine Handbook

(- l’\ File Edit Asset View Debug Window Tools Help
w9

VRTemplateMap BP_SGPawn X
= i@ Compile i =g Diff v fDFind *Q Hide Unrelated

[¢ Components x
+ Add Q

I BP_SGPawn (Self)
k. Scene Root (SceneRoot) Edit in C++
k. Wrist Tracker Right (WristTrackerRight) Edit in C++
< Controller Visualizer Right (ControllerVisualizerRight) Edit in C++

2 Hand Right (HandRight)

Right Thumb Fingertip Grab Collider (RightThumbFingertipGrabCollider)
Right Middle Fingertip Grab Collider (RightMiddleFingertipGrabCollider) Edit in C++
Right Index Fingertip Grab Collider (RightindexFingertipGrabCollider) Edit in C++
Right Thumb Fingertip Touch Collider (RightThumbFingertipTouchCollider) Edit in C++
Right Index Fingertip Touch Collider (RightIindexFingertipTouchCollider) Edit in C++
Right Middle Fingertip Touch Collider (RightMiddleFingertipTouchCollider) Edit in C++
Right Ring Fingertip Touch Collider (RightRingFingertipTouchCollider) Edit in C++
Right Pinky Fingertip Touch Collider (RightPinkyFingertipTouchCollider) Edit in C++
2 Real Hand Right (RealHandRight) Edit in C++
2, Hand Left (HandLeft) Edit in C++
Left Ring Fingertip Touch Collider (LeftRingFingertipTouchCollider) Edit in C++
Left Pinky Fingertip Touch Collider (LeftPinkyFingertipTouchCollider) Edi
Left Middle Fingertip Touch Collider (LeftMiddleFingertipTouchCollider) Edit in C++
Left Thumb Fingertip Grab Collider (LeftThumbFingertipGrabCollider) Edit in C++
Left Index Fingertip Grab Collider (LeftIndexFingertipGrabCollider) Edit in C++
Left Middle Fingertip Grab Collider (LeftMiddleFingertipGrabCollider) Edit in C++
Left Thumb Fingertip Touch Collider (LeftThumbFingertipTouchCollider) Edit in C++
95 Left Index Fingertip Touch Collider (LeftindexFingertipTouchCollider) Edit in C++

M« Camera (Camera) Edit in C++
k. Wrist Tracker Left (WristTrackerLeft) Edit in C++

s Controller Visualizer Left (ControllerVisualizerLeft) Edit in C++
2, Real Hand Left (RealHandLeft) Edit in C++

131/461

The SenseGlove Unreal Engine Handbook

Also, it's possible to filter the properties for these SenseGlove components inside
the Details panelinside the sGpPawn Blueprint Editor by typing the word SenseGlove
inside search box of the Details panel.

132 /461

The SenseGlove Unreal Engine Handbook
X
SGPawn

Details

% SenseGlove

Sense Glove
WristTrackerLeft
Right
Wrist Tracking Settings Overrides
Override Plugin Settings
HandLeft
Right
Virtual Hand Settings Overrides
Override Plugin Settings
RealHandLeft
Right
Virtual Hand Settings Overrides
Override Plugin Settings
WristTrackerRight
Right
Wrist Tracking Settings Overrides
Override Plugin Settings
HandRight

Right

133 /461

The SenseGlove Unreal Engine Handbook

Override Plugin Settings

RealHandRight

Right

Virtual Hand Settin

Override Plugin Settings

Please visit how to setup the Virtual Hand Meshes, The Virtual Hand Mesh Settings,
and how to setup the Wrist Tracking Hardware sections for more information.

134/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

Setting Up SGPlayerController

Depening on the Unreal Engine version and your project's type and configuration,
you might be able to set sGPlayerController as the default Player Controller Class
by navigating to Project Settings > Project > Maps & Modes > Default Modes >
Selected GameMode > Player Controller Class.However, regardless of the engine
version or project type and configuration, you can always configure this by opening
your Default GameMode and setting the default Player Controller Class directly
from there. Once set, click on the compile button and save your game mode
Blueprint asset.

File Edit Asset View Debug Window Tools Help - m] X

()
BP_SGGameModex x SGGame Mode Base

o) [@) =§i Compile : = Q' Diff v L+ Class Settings | #2 Class Defaults

NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name
Game Mode

Public View

5 Content Drawer 8 Output Log Ccmd v & 1Unsaved $* Revision Control v

Tip

For greater control and customization, consider extending the
SGPlayerController.

Caution

135/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgplayercontroller.html#extending-sgplayercontroller

The SenseGlove Unreal Engine Handbook

Setting SGPlayerController or a subclass of it as the default Player Controller
Class without setting sGpawn or a subclass of it as the Default Pawn Class will
cause your simulation or editor to crash. So, it's a strict requirement.

Extending SGPlayerController

Follow these steps to extend and set up your own version of SGPlayerController :

1. In the Content Browser, clickthe + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

=
= % Perspective @ Lit | Show

1 . - - S S 1
. e =B @ © GIED (D G =B ¢
i

V; Import to /Game/Blueprints
&7 Add Feature or Content Pack..
B Add Quixel Content

3 New Folder

- .
"lm Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

Level
hold (Ctrl + Alt) for more

A

* X
*

Material

NELEIERAEN]

Animation
o Content E i
Artificial Intelligence

-+ Add Audio > Content > Blueprints £+ Settings
Blueprint

Favorites
Cinematics

SGHandb Editor Utilities
All Foliage
Conte Fx
Blue
Cha Gameplay
FPV Input
Levi |ive Link
VRS
VRT Material Drop files here or right click tc
AU Media
B
H:
In Paper2D
M Physics
M
Te

Miscellaneous

Texture
Collectior 100l Presets
User Interface

5 Content [World

136 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

The SenseGlove Unreal Engine Handbook

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

e el Pawn used by the player.

Game Mode Base defines the game being played, its rules,

[+
) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

C, | - E O e e added to any actor.

A Scene Component is a component that has a scene

A
| CEEUE CETIEEET transform and can be attached to other scene ...

ALL CLASSES

3.In the expanded ALL CLASSES section, start typing SGPlayerController inthe
Search box. When sGPlayerController appears, select it and click the select
button to create your new Blueprint class based on it.

137/ 461

The SenseGlove Unreal Engine Handbook

Pick Parent Class

v COMMON

An Actor is an object that can be placed or spawned in the

@ Actor
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn :
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

AL e el G Pawn used by the player.

Game Mode Base defines the game being played, its rules,

40}
& i
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

[*{ Actor Component added to any actor.

A Scene Component is a component that has a scene

n
| e SRR transform and can be attached to other scene ...

w ALL CLASSES

¥ SGPlayerController
@& Object
@ Actor
@ Controller
&Q PlayerController

- “WSGPlayerControlle

5 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at
any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

138 /461

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

h's

» Favorites Q

¥ SGHandbook Q

& All
&= Content
i Blueprints
im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate
im Audio
im Blueprints
#m Haptics
i Input
T WERS
i Materials

i Textires

» Collections ® Q

BP_SGPlayer
Controller

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

139 /461

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGPlayerController as the default
Player Controller Class.Depening on the Unreal Engine version and your
project's type and configuration, you might be able do this by navigating to
Project Settings > Project > Maps & Modes > Default Modes > Selected
GameMode > Player Controller Class.However, regardless of the engine
version or project type and configuration, you can always configure this by
opening your Default GameMode and setting the default Player Controller
Class directly from there. Once set, click on the compile button and save your

game mode Blueprint asset.

File Edit Asset View Debug Window Tools Help - (m] X

()

BP_SGGameModex x SGGame Mode Base
= | (o] :gj Compile ; = 0' Diff v {:} Class Settings Z Class Defaults
NOTE: This is a data only blueprint, so only the default values are shown. It does not have any script or variables. If you want to add some, Open Full Blueprint Editor

Q

Actor Tick

Classes

Default Player Name

Game Mode

Public View

5 Content Drawer |8 Output Log Cmd v & 1Unsaved $* Revision Control v

140/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggamemodebase.html

The SenseGlove Unreal Engine Handbook

Setting Up SGGamelnstance

Setting SGGameInstance as the default Game Instance Class is very straightforward.
You can do this by navigating to Project Settings > Project > Maps & Modes > Game

Instance > Game Instance Class.

u Y Project Settings

All Settings Q
-

Project

Description

Default Modes

Encryption
GameplayTags

» Maps & Modes
Movies
Packaging
Supported Platforms

Default Maps
Target Hardware

Editor Startup Map
Game ol

Asset Manager Editor Template M

. Game Default Map
Engine
Al System

Advanced

Animation Local Multiplayer

Animation Modifiers
Audio
Chaos Solver

Cinematic Camera

©
Control Rig

Tip

For greater control and customization, consider extending the
SGGamelnstance.

Important

Currently, setting SGGameModeBase or a subclass of it as the default Game
Instance Class iS not a strict requirement. However, if you intend to use any
SenseGlove console command it becomes mandatory. If not set, SenseGlove
console commands will not be recognized by Unreal Engine.

141/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html#extending-sggameinstance
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

The SenseGlove Unreal Engine Handbook

Extending SGGamelnstance

Follow these steps to extend and set up your own version of SGGameInstance :

1. In the Content Browser, clickthe + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose
Blueprint Class from the context menu.

-
= ’Perspectwe © Lit Show
D/

|l - e iy AW 3 1
. b < 2NN NE 10 K4 10° JEA(025) (k1
./, 4

o+ Sl"t‘clam,

]
"
N

.
Q

V; Import to /Game/Blueprints
¥, Add Feature or Content Pack..
B Add Quixel Content

New Folder

- 8
={a Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors

and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.

hold (Gtrl + Alt) for more

@ Material

: NELEIERSSEN

Animation
5 Content E e)
Artificial Intelligence
+ Add Audio > Content > Blueprints 1+ Settings
. Blueprint
Favorites
Cinematics
SGHandb Editor Utilities
All Foliage
Conte FX
Blu¢
Cha Gameplay
FPV. Input
Levi[ive Link
VRS .
VR] Material Drop files here or right click to create content
Media
Miscellaneous
Paper2D
Physics
Texture
Collectior 100l Presets
User Interface

¥5 Content [World JiTrace v @)

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

142/ 461

COMMON

© Actor

Pawn

x
& Character

Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

Cancel

3.Inthe expanded ALL CLASSES section, start typing SGGameInstance in the
Search box. When SGGameInstance appears, select it and click the Select
button to create your new Blueprint class based on it.

143/ 461

COMMON

© Actor

Pawn

x
Character

&q Player Controller

Game Mode Base
[#] Actor Component
A, Scene Component

ALL CLASSES
¥ SGGamelnstance

@ Object
@ Gamelnstance

The SenseGlove Unreal Engine Handbook

Pick Parent Class

An Actor is an object that can be placed or spawned in the
world.

A Pawn is an actor that can be 'possessed’ and receive
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

A Player Controller is an actor responsible for controlling a
Pawn used by the player.

Game Mode Base defines the game being played, its rules,
scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be
added to any actor.

A Scene Component is a component that has a scene
transform and can be attached to other scene ...

(ONSGGamelnstance

3 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

144/ 461

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

» Favorites Q =Tv Q

¥ SGHandbook Q

&= All
I= Content @
i Blueprints

im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate

im Audio

im Blueprints

#m Haptics

i Input

T WERS

i Materials

i Textires

» Collections ® Q

BP_SGGame
Instance

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

145/ 461

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameInstance as the default Game
Instance Class.You can do this by navigating to Project Settings > Project >

Maps & Modes > Game Instance > Game Instance Class.

& Project Settings
All Settings Q

Project Defaut Modes
Description
Encryption
GameplayTags
Maps & Modes
Movies ment

Packaging
S element

Supported Platforms
Default Maps

Target Hardware

Editor Startup Map

Game

Manager Editor Template Map

T
Game Default Map

Slate RHIRenderer Settings
Widget State Settings N

Eng | ne Local Multiplayer

Al System plits
Animation Two Player
Animation Modifi Three Player Split:
Audio

Ch olver d to Player 1

Cinematic Camera Game Instance

Game

146/ 461

The SenseGlove Unreal Engine Handbook

Setting Up SGGameUserSettings

Setting SGGameUserSettings as the default Game User Settings Class is very
straightforward. You can do this by navigating to Project Settings > Engine >
General Settings > Default Classes > Advanced > Game User Settings Class.Once
you change the default Game User Settings Class the Unreal Editor will prompt you
with Restart required to apply new settings.For the changes to take effect, click
on the Restart Now button and wait for the editor to reopen.

& Project Settings

Engine Q

Al System
Medium Font
Animation
Animation Modifiers
Audio Large Font
Chaos Solver
Advanced

Cinematic Camera
Default Classes

il

(CRONONS)

Cooker

Crowd Manager

Data Driven CVars

Debug Camera Controller
Enhanced Input

Enhanced Input (Editor Only)
Gameplay Debugger

Garbage Collection

€
(Gl ¢
CH ¢
€K

» General Settings
Hierarchical LOD Default Materials
Input
ws Indicator Material
Interchange
Interchange gITF
Interchange MaterialX

Landscape

Restart required to apply new
settings

Restart Now Restart Later

JiTracev @ [=& DerivedData v &% 1 Unsaved ¥ Revision Control v

Tip

For greater control and customization, consider extending the
SGGameUserSettings.

Important

147/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html#extending-sggameusersettings

The SenseGlove Unreal Engine Handbook

Currently, setting SGGameUserSettings or a subclass of it as the default Game
User Settings Class is not a strict requirement. However, if you intend to use
any SGGameUserSettings-related SenseGlove console command it becomes
mandatory. If not set, calling any SGGameUserSettings-related SenseGlove
console command will cause your simulation or editor to crash.

Extending SGGameUserSettings

Follow these steps to extend and set up your own version of SGGameUserSettings :

1. In the Content Browser, click the + Add button, then select Blueprint Class
from the menu . Alternatively, right-click inside the Content Browser and choose

Blueprint Class from the context menu.

4;...! | N . = L) () € G0 CERLD CALFS (a3

= W% Perspective Q@ Lit Show ‘

V; Import to /Game/Blueprints
& Add Feature or Content Pack..
B Add Quixel Content

B3 New Folder

- .
= (. Blueprint Class Blueprints are special assets that provide an intuitive, node-based interface that can be used to create new types of Actors
and script level events; giving designers and gameplay programmers the tools to quickly create and iterate gameplay from
‘within Unreal Editor without ever needing to write a line of code.
hold (Ctrl + Alt) for more

@ Material

x : Niagara System

Animation
o Content E i
Artificial Intelligence

+ Add Audio > Content > Blueprints 4} Settings

. Blueprint
Favorites " "
Cinematics
SGHandb Editor Utilities

All Foliage
Conte Fx

Blu¢ G ‘

Cha ameplay

FPV Input

LE\"_‘ Live Link

VRS

VvR] Material Drop files here or right click to cr

AU Media

E Miscellaneous

In Paper2D

M Physics
M
G

Collectior

Texture

Tool Presets
User Interface
5 Content [World

148/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/

The SenseGlove Unreal Engine Handbook

2. A dialog will appear asking you to choose a parent class. Click on the ALL
CLASSES section to expand the list of available classes.

Pick Parent Class

COMMON

An Actor is an object that can be placed or spawned in the

@ Actor .
—_ world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

e el Pawn used by the player.

Game Mode Base defines the game being played, its rules,

[+
) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

C, | - E O e e added to any actor.

A Scene Component is a component that has a scene

A
| CEEUE CETIEEET transform and can be attached to other scene ...

ALL CLASSES

3.In the expanded ALL CLASSES section, start typing SGGameUserSettings in the
Search box. When sGGameUserSettings appears, select it and click the select
button to create your new Blueprint class based on it.

149/ 461

The SenseGlove Unreal Engine Handbook

Pick Parent Class
COMMON

An Actor is an object that can be placed or spawned in the

@® Actor .
—= world.

A Pawn is an actor that can be 'possessed’ and receive

Pawn - - T
input from a controller.

A character is a type of Pawn that includes the ability to
walk around.

x
Character

A Player Controller is an actor responsible for controlling a

S Tl Pawn used by the player.

Game Mode Base defines the game being played, its rules,

) !
Game Mode Base scoring, and other facets of the game type.

An ActorComponent is a reusable component that can be

(| L H O DETL e added to any actor.

A Scene Component is a component that has a scene

A
ts Scene Component transform and can be attached to other scene ...

ALL CLASSES
¥ SGGameUserSettings

@ Object
@ GameUserSettings

() SGGameUserSettings

3 items (1 selected)

Select Cancel

4. After returning to the Content Browser, the Unreal Editor will prompt you to
rename NewBlueprint to your desired class name. You can rename the class at

any time by pressing F2 or by right-clicking on it and selecting Rename from the
context menu.

150/ 461

The SenseGlove Unreal Engine Handbook
5 Content Browser x

-+ Add Vylmport |= Save All ®© > Content > Blueprints

» Favorites Q =v Q

¥ SGHandbook Q

& All
P‘.‘.Content‘ [} =
m Blueprints m
Bm Characters
im FPWeapon
im LevelPrototyping :
ilm VRSpectator NewBlueprint
I= VRTemplate
im Audio
im Blueprints
EmHaptics
il Input
[WERS
m Materials
B Textires

» Collections ® Q

Blueprint Class

1 item (1 selected)

o Content Drawer B Output Log Cmd v

5. Once you have renamed the NewBlueprint class to your desired name, click on
Save All to save the new class to disk.

5 Content Browser x

-+ Add VyImport |& Save All ® All > Content » Blueprints

» Favorites Q =Tv Q

¥ SGHandbook Q

&= All
I= Content @
i Blueprints

im Characters
im FPWeapon +*
im LevelPrototyping
im VRSpectator
&= VRTemplate

im Audio

im Blueprints

#m Haptics

i Input

T WERS

i Materials

i Textires

» Collections ® Q

BP_SGGameUser
Settings

Blueprint Class

1 item (1 selected)

B5 Content Drawer M Output Log Cmd v

151/ 461

The SenseGlove Unreal Engine Handbook

6. Finally, set your newly created subclass of sGGameUserSettings as the default
Game User Settings Class.You can do this by navigating to Project Settings >
Engine > General Settings > Default Classes > Advanced > Game User Settings
Class . Once you change the default Game User Settings Class the Unreal
Editor will prompt you with Restart required to apply new settings.For the
changes to take effect, click on the Restart Now button and wait for the editor
to reopen.

Y Project Settings

Engine Q
Al System Medium Font
Animation
Animation Modifiers
Large Font
Audio
Chaos Solver Advanced

Cinematic Camera Default Classes

Control Rig
Cooker

Crowd Manager

ITODD®

Data Driven CVars
Debug Camera Controller
Enhanced Input

Enhanced Input (Editor Only)
b ®

ko
kB ®

Gameplay Debugger

Garbage Collection

General Settings

Hierarchical LOD Default Materials

Input ow atorMaterial v
ator Material

Interchange

Interchange gITF

Interchange MaterialX

Restart required to apply new
settings

Restart Now Restart Later

JiTrace~ @ [=& DerivedData v 2 AllSaved ¥’ Revision Control v

152/ 461

The SenseGlove Unreal Engine Handbook

Setting Up the Virtual Hand Meshes

Setting up Virtual Hand Meshes involves two key steps:

1. Importing the virtual hand meshes into your project.
2. Configuring the virtual hand settings.

In this section we focus on the first part. For detailed information on step two, please
visit the Virtual Hand configuration section.

Compatible Virtual Hand Meshes

The SenseGlove Unreal Engine Plugin is compatible with any virtual hand mesh that
adheres to the Epic rig and bone structure. Additionally, the virtual hand meshes
must be exported with specific settings to meet all requirements. If you're planning
to model and rig your own virtual hand meshes, the Epic FBX Skeletal Mesh Pipeline
is a useful starting point.

However, if you're looking to get up and running with the SenseGlove Unreal Engine
Plugin quickly, the process is much simpler. Unreal Engine has included two sets of
compatible virtual hand models with the Unreal Engine VR Template since version
5.1. This guide will walk you through how to export these virtual hand models from

the VR Template and import them into your VR simulation.

Caution

While it is possible to migrate the virtual hand meshes directly from the Content
Browser of the VR Template, this approach is not recommended. As part of the
setup process, it is necessary to configure the SenseGlove Grab and Touch
sockets. Although it's possible to set up these sockets manually, as
demonstrated in one of our older tutorials, we no longer recommend doing so.
Since version v2.1.0 of the SenseGlove Unreal Engine Plugin, we've included a
tool that automates the socket setup with a single click, eliminating the need for
the tedious manual process.

153 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/
https://dev.epicgames.com/documentation/en-us/unreal-engine/fbx-skeletal-mesh-pipeline
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html

The SenseGlove Unreal Engine Handbook

Unfortunately, the SenseGlove Sockets Editor tool does not support skeletal
meshes that share their skeleton. This is the case with the hand models
included in the VR Template. Because of this limitation, we will be reimporting
the virtual hand meshes with separate skeletons to ensure full compatibility
with the SenseGlove Sockets Editor.

Exporting the Virtual Hand Meshes from the
VRTemplate

1. Start by creating a new Unreal Engine project using the VR Template. In the
Unreal Project Browser, select GAMES > Virtual Reality .

Unreal Project Browser

——————

RECENT PROJECTS Q‘ ,.W = ’
__‘ IEERERSREEEED

Blank First Person Third Person Top Down

Virtual Reality

GAMES \ ‘ A\
(\ Blueprint Virtual Reality Template using OpenXR for
\ skto d Mobile. The template featu
0 0tIo F [o

S
a2 g
FILM I VID & Handheld AR Virtual Reality Vehicle

LIVE EVENTS g

- ¢ (e BT il &
A 78
- Project Defaults
| :
oal Starter Content

1!

AUTOMOTI

PRODUCT DESIGN &
MANUFACTURING

W

SIMULATION

Project Location C amadou\Desktop\dev Project Name | VRTemplate|

Create Cancel

154/ 461

The SenseGlove Unreal Engine Handbook

2. Once the Unreal Editor opens with your new project, navigate to the Content
Browser. Go to All > Content > Characters > MannequinsXR > Meshes . Here,
you'll find two sets of virtual hand meshes: SDkM_MannyXR_left and
SDKM_MannyXR_right (male hands), and SDKM_QuinnXR_left and
SDKM_QuinnXR_right (female hands).

(» File Edit Window Tools Build Select Actor Help VRTemplate
1

A VRTemplateMap

| (o) &, Selection Mode v E Platforms v

b e, -
=_ % Per;pecnve @ Lit I Show ‘- NP 3'@ W TE 10T A 10°— A 0,255 (k1 g8 = Outliner
\ ||—- e\ =v Q

B5 Content Browser x

{:} Settings v

[+ e

Ung d Unsaved

-+ Add Vilmport | Save Al © All > Content > Characters > MannequinsXR > Meshes v £+ Settings @ ltem Label o Type

A VRTemplateMap (Edito

Favorites Q| = (Q ® BP_VRSpectator

Edit VRSpe
VRTemplate Q

= All

& Content
& Characters
& MannequinsXR
EmAnima
i Materials
[Meshes
xtures

ABP_MannequinsXR

SK_MannequinsXR

¢

Skeletal MeshLOD
Settings_

{1 ;';'

SKM_MannyXR_left

i

SKM_MannyXR_right

MannequinsXR 48 actors

| n
il LevelPrototyping
im VR Spectator

¢ Details
mVRTemplate

L1l

SKM_QuinnXR_left SKM_QuinnXR_right

Collections ® Q

7 items

¥5 Content Drawer |8 Output Log Cmd v Jil Trace v =5 Derived Data v

£ All Saved $* Revision Control v

3. Choose the pair of hand meshes you want to export. Right-click on them, then
select Asset Actions followed by Bulk Export... from the context menu.

155/ 461

The SenseGlove Unreal Engine Handbook

0o mE v N E .

4. In the file dialog that appears, choose a folder to save the exported hands, and
clickthe select Folder button to export the meshes in FBX format.

@ Choose A Directory

1+ R This PC Desktop » VRHands

Qrganize ~ New folder

M Desktop b g Date modified
Downloads
E Documents #

»

BH Pictures

No items match your search.

= This PC
3D Objects
A Desktop
E Documents
Downloads
Music
B Pictures
& Videos
e WIN10 (C)

¥ Netwoark

Folder: ‘ |

Select Folder | | Cancel

156 / 461

The SenseGlove Unreal Engine Handbook

5. The Unreal Editor will then display the FBX Export Options dialog. Leave the
default settings unchanged and click Export All to proceed.

157 / 461

The SenseGlove Unreal Engine Handbook

FBX Export Options X

Reset to Default

Current File: C:/Users/mamadou/Desktop/VRHands/Game/Characters/MannequinsXR/Meshes/SK
Exporter
Fbx Export Compatibility FBX 2013
Advanced
ASCII
Force Front XAxis
Mesh
Vertex Color
Level Of Detail
Static Mesh
Collision
Export Source Mesh
Skeletal Mesh
Export Morph Targets
Animation
Export Preview Mesh
Map Skeletal Motion to Root
Export Local Time
Advanced
Bake Camera and Light Animation Bake Transforms

Bake Actor Animation None

Export All Export Cancel All

158 /461

The SenseGlove Unreal Engine Handbook
Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the
default settings.

6. After exporting, you can find the FBX files for both hands in the directory you
selected:

/path/you/chose/for/bulk/export/Game/Characters/MannequinsXR/Meshes/ .

l B -~ | C:\Users\mamadou\Desktop\VRHands\Game\Characters\MannequinsXR\Meshes
Home Share View
e = = e v Open ~
+ BB PR = .
L] t . § 2 B cait
{ C Copy

opy Paste Move

a Ut o

Clipboard Organize

Delete Rename New Properties)
B folder - P History

Open

v+ R This PC » Desktop » VRHands * Game » Characters > MannequinsXR » Meshes

B Name Date modified Type
> Quick access

| [} :26 3X Fi
§ Deskiop , . SKM_MannyXR_left. FBX 10/08/2024 21:26 FBX File

I SKM_MannyXR _right.FBX 10/08/2024 21:26 FBX File
Downloads

B Documents
B Pictures

& This PC
W 3D Objects
i Desktop
E Documents
Downloads
Music
B Pictures

&5 Videos

i WIN10 (C)

o Network

& Linux

2items |

Importing the Virtual Hand Meshes into Your Own
Project

1. Start by creating a new folder inside your project's Content Browser. Navigate
to that folder, then press the Import button next to the + Add button at the
top of the Content Browser.

159 /461

The SenseGlove Unreal Engine Handbook

File Edit Window T Build Select Actor Help SGHandbook

A Untitled
& Selection Mode v G- i E Platforms v

f= Outliner

-r,c‘) Content Browser x

Add 3y Import @ Save All All > Content > SGHandbook > Settings
+ po ® ontel 00| o] Y & ltem Label o Type
= @ v A Untitled (Editor) World

HLOD
SGHandbook Q Lighting

& All DirectionalLight
[Content nentialHeig
I SGHandbook
i Meshes

Favorites (e}

SM_SkySphere
olumetricClouc

138 actors (138 loaded)

Details x
Drop files here or right click to create content s

Collections ® Q (items

¥5 Content Drawer |8 Output Log Cmd v « =5 Derived Data v 2 All Saved 2 Revision Control v

2.In the Import dialog that appears, navigate to the folder containing the virtual
hand meshes. Select both FBX files and click the Open button.

160/ 461

The SenseGlove Unreal Engine Handbook
Import
<« v 1 R VRHands *» Game » Characters * MannequinsXR > Meshes

Organize ~ New folder

| Desktop

Name Date modified Type

Downloads

E Documents

-
b g
_MannyAr_leTt. g ile
B skmm XR_left.FBX 10/08/2024 21:26 FBX Fil
* B SKM_MannyXR_right.FBX 10/08/2024 21:26 FBX File
»

BH Pictures

9 This PC
9 3D Objects
| Desktop
E Documents
Downloads
Music
BH Pictures
. Videos

i WIN10 ()
& Network

File name: |"SKM_MannyXR_left. FBX" "SKM_MannyXR_right.FBX"

3. The Unreal Editor will display the FBX Import Options dialog. Leave the default
settings unchanged and click Import A1l to proceed.

161/461

The SenseGlove Unreal Engine Handbook

FBX Import Options X

Import Skeletal Mesh (?) Reset to Default
Current Asset: /Game/SGHandbook/Meshes/SKM_MannyXR_left
Mesh
Skeletal Mesh
Import Mesh

Import Content Type Geometry and Skinning Weights. v

None v
Skeleton
Advanced
Animation
Import Animations
Animation Length
Advanced
Transform
Import Translation
Import Rotation
Import Uniform Scale
Miscellaneous
Convert Scene

Force Front XAxis
162 / 461

The SenseGlove Unreal Engine Handbook

Convert Scene Unit

Material
Search Location 0C3 v

Material Import Method Create New Materials

Import All Import

Tip

If you're unsure whether the options are set to their defaults, you can click the
Reset to Default button in the top-right corner of the dialog to restore the
default settings.

4, After the import process is done, a dialog will display the import logs. Any
errors or warnings encountered during the import process will be shown here.

163 /461

The SenseGlove Unreal Engine Handbook

£y Message Log

Anim Blueprint Log
t Check

t Reimport

/\ No smoothing group information was found in this FBX scene. Please make sure to enable

t Tools

t Virtualization
Automation Testing Log
Blueprint Log
Build and Submit Errors
Compiler Log
Control Rig Log
Editor Errors
FBX Import (1)
HLOD Results
Lighting Results
Load Errors
Localization Service (1)
Map Check (1)
Packaging Results
Packed Level Actor Log
Play In Editor
Revision Control (6)
Slate Style Log
Trace Analysis

Note

The following warning can be safely ignored:

FBXImport: Warning: No smoothing group information was found in this FBX
scene. Please make sure to enable the 'Export Smoothing Groups' option 1in
the FBX Exporter plug-in before exporting the file. Even for tools that
don't support smoothing groups, the FBX Exporter will generate appropriate
smoothing data at export-time so that correct vertex normals can be

inferred while importing.

5. The imported virtual hand meshes should now appear in the folder you
selected in the Content Browser. Unreal Engine will create a Skeletal Mesh, a
Skeleton, and a Physics Asset for each imported mesh, along with a default
Material asset shared between both virtual hand meshes.

164/ 461

o File Edit Window Tools Build Select Actor
(Ar)

A Untitled

= &, Selection Mode v

B5 Content Browser x

<+ Add Vjlmport @ Save Al ©

Favorites (e}

v Q
SGHandbook Q
= All
F& Content
I SGHandbook
i Meshes

*

MI_Manny_02 SKM_MannyXR_|eft

Material

m MM

* *
SKM_MannyXR_right
sset _Skeleton

Collections @ Q7 jtems (1 selected)

¥5 Content Drawer |8 Output Log Cmd v

All > Content > SGHandbook > M

m m

SKM_MannyXR_left_

SKM_MannyXR_right

The SenseGlove Unreal Engine Handbook

a1 Platforms v

)

£+ Settings

M

SKM_MannyXR_right

* *

SKM_MannyXR_left_
Skeleton

JilTrace~ @) (@ =8 DerivedData v

SGHandbook

f= Outliner
=vi(Q

L olled Un
®> & Item Label »

A Untitled (Editor)

ar
scapesirea

©, LandscapeStrea
© LandscapeStrea Landscap
©, LandscapeStrea
©, LandscapeStrea
@ | anderaneQtrea

138 actors (1 selected)
¢ Details X

© LandscapeStrear =+ Add =Z of
© LandscabeStreaminaProxy_4_3_0 (Insi

B x

LoD

Transform

&% 7 Unsaved $* Revision Control v

6. You can choose to keep or modify the default material. However, since the
SenseGlove Unreal Engine Plugin provides a default material, we choose to
delete the default material created by Unreal Engine during the import process.
We'll assign the SenseGlove default material to the imported virtual hand
meshes in the next steps. Right-click on the default material and select Delete.

165 /461

The SenseGlove Unreal Engine Handbook

¥5 Content Browser x
<+ Add Vylmport & Save Al © All > Content > SGHandbook »

Favorites Q =v Q

SGHandbook Q

= All
& Content
& SGHandbook
EESES =

MI_Manny_02 el b atea] MannyXR_ KM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_

Create Material Instance __Skeleton right right_PhysicsAsset right_Skeleton

Material 2 Edit..
Rename
Duplicate CTRL+D
Save CTRL+S

Delete DELETE
Asset Actions POl Delete the selected items.

Asset Localization >

ow in Folder View

i Copy Reference
Copy File Path
Reference Viewer...
Size Map...
Audit Assets...
Shader Cook Statistics...
Connect to Revision Control...
Open Material.h
& View Documentation

Collections ® Q 7 items (1 selected)

5 Content Drawer [Output Log md v

7.In the Delete Assets dialog, click Force Delete to confirm the deletion of the

default material.

166 /461

The SenseGlove Unreal Engine Handbook

Delete Assets

Pending Deleted Assets

Asset Class Asset Referencers Memory Reference
MI_Manny_02 Material 2 References

Some of the assets being deleted are still referenced in memory.

How do you want to handle this?

Delete the asset anyway, but referencers may
not work correctly anymore.

Use as a last resort.
Force Delete

8. Open the Skeletal Mesh asset for the left hand and assign the
M_SenseGlove_VirtualHand material from the Asset Details panel.

167 / 461

File Edit Asset Window Tools Help

@ SKM_MannyXR_leftx X

Preview Animation ~ 2} Create Asset v

_— =
Character || L uto

5.95.15

B5 Content Drawer [Output Log Cmd v

The SenseGlove Unreal Engine Handbook

) Reimport Base Mesh » ;% *
<= Skeleton Tree x

2
Name

< root
< hand_|
" index_metacarpal_|
<" index_01_|
< index_02_|
< index_03_l

/ middle metacarpal |

» x1,0 >

" Asset Details x

Q

W Material Slots

2 Details

Material Slots

Element 0

Morph Target ..

1 Material Slots

/" Curves

. Preview Scene...

== Re;

®

M_SenseGlove_VirtualHand v
©
€ KB Slot

W LOD Picker

O I I I} LoD

Auto (LODO)

&% 6 Unsaved

£ Revision Control v

9. Repeat the process for the Skeletal Mesh asset of the right hand, and assign the

M_SenseGlove_VirtualHand material in the Asset Details panel.

File Edit Asset Window Tools Help

@& SKM_MannyXR_rightx x

Preview Animation~ &, Create Asset v
— — _
Character || L uto

#5 Content Drawer [Output Log Cmd v

V1 Reimport Base Mesh : > ;% *

£z Skeleton Tree ~ x
2

Name

" root

» x1,0 »

' AssetDetails x & Details

(o}

w Material Slots
Material Slots 1 Material Slots

Element 0

Morph Target...

. Preview Scene...

B o

®

ve_VirtualHand v

: . M.S :
jht ©
ate €k Slot

w LOD Picker

onp

LOD Auto (LODO)

= 6 Unsaved

168 /461

v

$* Revision Control v

The SenseGlove Unreal Engine Handbook

10. Return to the Content Browser by closing all asset windows and click the save
A1l button to save all imported virtual hand mesh assets to disk.

File Edit Window Too Build Select Actor Help

SGHandbook
A Untitled

€ Selection Mode v v v

a8 Platfor

-r,d Content Browser x

Add Yy Import & Save All All > Content > SGHandbook
+ = © onte o0 4 Item Label

A, Untitled (Editor)
HLOD
SGHandbook Q_

Lighting
&= All 5+, DirectionalLight
V& Content
#m SGHandbook
i Plugins

Favorites Q =v Q

SkyLight

SM_SkySphere
eleton ZéR,nghl S.SKIZ"Q‘/‘;?I1YXR’IIQ'1‘ @ VolumetricClouc

SKM_MannyXR_left SKM_MannyXR_left_ M_MannyXR_left_
Phy: t

138 actors (138 loaded)

Details X

Collections ® Q gitems

B5 Content Drawer B Output Log Cmd v

Ji Trace v @ [=B Derived Data v & 6 Unsaved £* Revision Control v

11.In the save Content dialog, choose Save Selected to confirm the saving all
action.

169 /461

The SenseGlove Unreal Engine Handbook

Save Content

Select Content to Save

Asset a File Type

SKM_MannyXR_left /Game/SGHandbook/SKM_MannyXR_left /Script/Engil
SKM_MannyXR_left_PhysicsAss /Game/SGHandbook/SKM_MannyXR_left_Ph' /Script/Engi
SKM_MannyXR_left_Skeleton = /Game/SGHandbook/SKM_MannyXR_left_Ske /Script/Engi
SKM_MannyXR_right /Game/SGHandbook/SKM_MannyXR_right /Script/Engi
SKM_MannyXR_right_PhysicsAs /Game/SGHandbook/SKM_MannyXR_right_P /Script/Engi
SKM_MannyXR_right_Skeleton /Game/SGHandbook/SKM_MannyXR_right_S| /Script/Engi

Save Selected Cancel

Setting up the Rigid Bodies

1. Open the Physics Asset for the left virtual hand mesh by double-clicking it in the
Content Browser. This will open the PhAT (Physics Asset Tool) editor, where the
virtual hand mesh for the left hand will appear with a default physics body,
usually shaped as a capsule.

170/ 461

The SenseGlove Unreal Engine Handbook
m File Edit Asset Window Tools Help
/ @® SKM_MannyXR_left_Ph.. x

= D Preview Mesh v Preview Animation v 'ﬁ' Reference Pose A Create Asset v

#z Skeleton Tree X = .‘; Perspective | @ Lit Show Physics ® Character)| LOD Auto # Details . Preview Sce.
+ Q fo 2 dies or bounds, T0UFA)

traints
Sollislurn

I Tools x Profiles
‘W Body Creation

Min Bone Size

Primitive Type

Vertex Weighting Dominant Weight v

Auto Orient to B

Walk Past Small.

Create Body for

Disable Collisi

Advanced

Constraint Creation

Create Constraints

Angular Constrai. Limited v

Generate All Bodies

¥5 Content Drawer [Output Log Cmd v 2 All Saved 2 Revision Control v

2.In the Tools panel, under the Body Creation section, locate the Primitive
Type dropdown and select Box instead of the default Capsule shape. Then,
clickthe Generate All Bodies button at the bottom of the Tools panel to
create a new physics body.

m File Edit Asset Window Tools Help

@® SKM_MannyXR_left_P.. * x

= | (o) Preview Mesh v Preview Animation v -ﬁ— Reference Pose '(','_ Create Asset v (?/ o

iz Skeleton Tree X = .’; Perspective | @ Lit Show Physics ® Character 4 » | & Details x & Preview Sce.

@ v

d_|

4 Tools X Profiles
w Body Creation
Min Bone Size
Primitive Type
Vertex Weighting Dominant Weight ~
Auto Orient to B.
“H @l Walk Past Small.
Create Body for
Disable Collision
» Advanced
w Constraint Creation
Create Constraints

Angular Constrai. Limited v

O I » Generate All Bodies

¥5 Content Drawer [Output Log Cmd v = 1 Unsaved 2 Revision Control v

171/ 461

The SenseGlove Unreal Engine Handbook

3. After generating the new body, some adjustments are required for optimal
interactions inside your VR simulations. Press the r key on your keyboard to
enter scaling mode and use the arrows to resize the physics body. To
reposition the body, press the w key to switch to translation mode. For
adjusting the rotation, press the e key. Toggle between these modes as
needed to fine-tune the physics body to your requirements.

> File Edit Asset Window Tools Help
()
@® SKM_MannyXR_left_P.. + x

a
= 5 Preview Mesh v Preview Animation v Reference Pose Create Asset v o

=
<z Skeleton Tree x = & Per:-;ecuve @Lit Show Physics Character ¢ Details x ¢ Preview Sce
+ © 1 Bo_dis_fs_ (1 Consideredifordpunds, 100%)
@ = 1 anmvg: (1 Box). - Q
Name 0 Constraints ‘ ; Physics Current Profile: Non
0 Collision Interactions
@hand_|

B &

Body
hand_|
1 shape(s)

Limited v

O 1nn Re-generate Bodies
5 Content Drawer |8 Output Log cmd v

& 1Unsaved $” Revision Control v

4.You can always revisit and adjust the rigid body later after testing its impact in
your VR simulations. For now, save the asset and close the PhAT editor.

172/ 461

The SenseGlove Unreal Engine Handbook

File Edit A Window
(AL)
@® SKM_MannyXR_left_P... » x

Animation v

- - —~ ——
tive i @ Lit W s C el LOD Auto § D | I A) §:)

1 Badias (1 Considarad for bounds, 100%) B &

1 Primitivas (1 Box)
) Corpsirainis Physics Current Profile: Non¢

Name 13t ;
0 Gollizion Intarzictions

Graph

1 shape(s)
Limited v
Re-generate Bodies

ion Control v

B OutputLog B Cmd v

5. Repeat the same procedure for the right virtual hand mesh.

Note

An older yet still relevant video tutorial demonstrating a similar procedure is
also available.

173 /461

https://youtu.be/K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

Setting up the SenseGlove Grab and Touch Sockets

To ensure the Grab/Release and Touch systems function correctly, multiple sockets
must be set up on each virtual hand mesh with precise locations and rotations.
Before version v2.1.0 of the SenseGlove Unreal Engine Plugin, this was a manual
and time-consuming process. However, with the v2.1.0 release, the plugin now
includes the SenseGlove Sockets Editor, a built-in tool specifically designed for this
task.

Note

If for any reason you still prefer to manually set up the sockets, a detailed video
tutorial is available.

Accessing the SenseGlove Sockets Editor
The SenseGlove Sockets Editor can be utilized in three ways:

1. By right-clicking on any Skeleton or Skeletal Mesh asset inside the Unreal
Content Browser.

174/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

Create

Edit...

Rename F2
Duplicate CTRL+D
Save CTRL#S

l
Il
it

Delete DELETE
Asset Actions >
Asset Localization >

Add SenseGlove Sockets
Clear Existing Sockets

| Output Log 5 Content Browser x 75 Show in Folder View

<4 Add Vilmport |@ Save All © All > Content > SGHandbook) Sl iR L+ Settings

Favorites

v Q Copy Reference

Copy File Path
SGHandbook -
Reference Viewer... ALT+SHIFT+R
T All

ze Map... A
Content :
M M Audit Assets... ALT+SHIFT+A

Shader Cook Statistics...

—. .. _ & 8 Connect to Revision Control... e
SKM_MannyXR_ SKM_MannyXR_ SKM_MannyX sKM_MannyXR_
left left_PhysicsAsset left_Skeleton Open Skeleton.h ight_Skeleton

¥ View Documentation
Skeleton

Collections ® Q 6 items (1 selected)

¥5 Content Drawer [Output Log Cmd v

JiiTracev @ @ =
Tip

You can also perform Sockets Editor actions in bulk by selecting multiple assets
of the same type and right-clicking on one of them. Note that if the selected
assets are not all of the same type, Sockets Editor actions will not appear (e.g.
selecting assets of type Skeletons and Skeletal Meshes together).

175/ 461

The SenseGlove Unreal Engine Handbook

4 tem Label «

A, Untitled (Editor)
HLOD

Lighting
225, DirectionalLight
& ExponentialHeightFog
) * SkyAtmosphere
ki M SkyLight

Create

5 % SM_SkySphere
Duplicate 1L z @ VolumetricCloud
Save CTRL+S = /4 Landscape
Delete DELETE 3 P PlayerStart
Asset Actions > | © WorldDataLayers-1
Asset Localization > % © WorldPartitionMiniMap

Add SenseGlove Sockets
Clear Existing Sockets

enseGlove or otherwise

Show in Folder View CTRL+B
e & % Show in Explorer 138 actors (138 loaded)
> Content > SGHandbook L+ Settings . petails p
Copy Reference s
Copy File Path
Reference Viewer... ALT+SHIFT+R
Size Map. ALT+SHIFT+M

Al

Audit Assets... ALT+SHIFT+A
Shader Cook Statistics...
Connect to Revision Control...

.. ®.... . 8 r... _ ®&.. _ ® Diff Selected

SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_

left left_PhysicsAsset left_Skeleton right right_PhysicsAsset right_Skeleton Open Skeleton.h
View Documentation

Skeleton e c Skeleton

2. From the Asset menu in the Skeleton Editor or Skeletal Mesh Editor for any
open Skeleton or Skeletal Mesh asset.

File Edit [Asset® Window Tools Help
A SKMM: Q
| &) B P) . Create Ass) Anim Notifies Retarget Manager V3 Import Mesh % Make Static Mesh Add SenseGlove Sockets > ,g‘
5 Find in Content Browser... CTRL+B.
¥ Q : Copy References vy > <10
Copy Paths
Name Reference Viewer...
" root Size Map...
¢ hand_| Audit Assets.
" index_metaca Shader Cook Statistics.
¢ index 01 Connect to Revision Control...
< index_02
< Remove Unused Bones from Skeleton
- middle_m
Update Skeleton RefPose

</ middle_01_
7 middle.02. Test Skeleton Curve Metadata for Use

/" middle_0

Details X

Add SenseGlove Sockets
¢ pinky_metaca, Clear Existing Sockets
¢ pinky_01_|
2 pinky.0 Clears all sockets; SenseGlove or otherwise
" pinky_03_|
" ring_metacarpal_|
" ring_01_1
</ 1ing_02_|
+ ring.

< thumb_01_| %) Animation W5 Asset Brow.

" thumb_0:
\ =+ AddCurve Q Find/Replace Curves

" thumb_0:
=v (Q

Curve Name Type

3. From the Skeleton Editor or Skeletal Mesh Editor toolbar for any open Skeleton
or Skeletal Mesh asset.

176/ 461

The SenseGlove Unreal Engine Handbook

The SenseGlove Sockets Editor currently offers two actions:

1. Add SenseGlove Sockets :Which adds and sets up the SenseGlove grab and
touch sockets to any virtual hand mesh that adheres to the Epic rig and bone
structure.

2. Clear Existing Sockets:which destructively clears all existing sockets;
SenseGlove or otherwise, from any mesh.

Important

Simply performing any of these actions won't permanently modify your assets.
In fact, if you close the Unreal Editor without saving your assets first, all changes
performed by the SenseGlove Sockets Editor will be lost forever. This is by
design and the plugin will leave this final choice to the user. So, in order to apply
the changes permanently, you must save the assets manually.

Adding the SenseGlove Sockets

When you invoke the Add SenseGlove Sockets action, the Sockets Editor will prompt
you for confirmation:

1771 461

The SenseGlove Unreal Engine Handbook

Message X

ii Do you want to add the SenseGlove sockets?

Yes No

If it succeeds at adding the standard SenseGlove sockets, you will receive a
confirmation message:

Message X

i‘_\ Successfully added the SenseGlove grab and touch sockets. If you wish the changes to
. persist, save the modified asset(s) now!

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the newly added sockets:

178 /461

The SenseGlove Unreal Engine Handbook

File Edit Asset Window Tools Help

)

SKM_MannyXR_left* 7 SKM_MannyXR_left_S... * x @ SKM_MannyXR_rightx SKM_MannyXR_right_.
Preview Mesh v Preview Animation v '4'_,_ Create As (@ Anim Notifies &% Retarget Manager > ,g-‘ o

+ Q foxv = i LOD Auto || P> x1,0 c » > || # Details x # Preview Scene

Name : : : Q

root 9% Socket Parameters
< hand_|
! GrabAttachPoint
" index_metacarpal_| ; = - X hand_|
" index_01_ elative Locatio ! 50 661
7 in |
< index_03_|
#! TouchIndexCollider
#! GrablndexCollider
" middle_metacarpal_|
" middle_01_|
/" middle_02_|
" middle_03_|
#! TouchMiddleCollider - -+ Add Curve Q Find/Replace Curves.
#! GrabMiddleCollider) =- @

GrabAttachPoint

@ Anim. [3 t.. / Curves

pinky_metacarpal_| Curve Name Type Bones Max L

< pinky_01_|
" pinky_02_|
" pinky_03_|
#! TouchPinkyCollider
" ring_metacarpal_|
< ring 01_1
< ring_02_|

drngoal L

¥5 Content Drawer |8 Output Log Cmd v & 4Unsaved 2 Revision Control v

To ensure the changes persist, save the assets to disk.

Note

The Add SenseGlove Sockets action can fail for various reasons, so it's
important to investigate and identify the cause if an issue arises.

Message X

Failed to add the SenseGlove sockets!

179/ 461

The SenseGlove Unreal Engine Handbook

Message X

Failed to add the SenseGlove sockets to '/Game/SGHandbook/
SKM_MannyXR_left_Skeleton.SKM_MannyXR_left_Skeleton’!

OK

Important

A common cause of failure is that the SenseGlove sockets have already been set
up, or the meshes you're using already have the necessary sockets. In this case,
consider using the Clear Existing Sockets action first.

Caution

Another common cause of failure is if your virtual hand meshes share a
skeleton. As noted in the Compatible Virtual Hand Meshes section, the
SenseGlove Sockets Editor does not support skeletal meshes that share their
skeleton. You may need to export and re-import the virtual hand meshes inin a
compatible manner first.

In any case, the SenseGlove Sockets Editor reports all failures in the Unreal Editor
logs. To view and investigate the logs, simply head to the window menu and click on
Output Log:

180/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#clearing-all-existing-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#compatible-virtual-hand-meshes
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#exporting-the-virtual-hand-meshes-from-the-vrtemplate
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/index.html#importing-the-virtual-hand-meshes-into-your-own-project

The SenseGlove Unreal Engine Handbook

File Edit | Window Tools Build Select Actor Help

k. Untitled Q
= Cinematics E Platforms v
i =K & Perspective /5 Content Browser

DISENE
ImgMedia
Outliner

= Viewports

I World Partition
Env. Light Mixer

Layers
Levels

«- Light Mixer
Place Actors
Variant Manager
World Settings

Device Output Log
Message Log

Qutput Log
Open the Output Log tab.

Open Marketplace

¥5 Content Browser > Quixel Bridge

Add 37 Impc > SGHandbook
+ : Load Layout > >0

b Favorites Save Layout

« SGHandbook Remove Layout

= All Enable Fullscreen SHIFT+F11
& Content
SGHandbook
Bl Plugins

SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_ SKM_MannyXR_
left left_PhysicsAsset left_Skeleton right right_PhysicsAsset right_Skeleton

Skeleton

For example, in the following screenshots the following errors are stated: Socket
'GrabAttachPoint' already exists on

' /Game/SGHandbook /SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a
duplicate! .

181 /461

The SenseGlove Unreal Engine Handbook

LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp FSGAssetUtils::FImpl::AddSocket 394]
Socket 'GrabAttachPoint' already exists on

' /Game/SGHandbook /SKM_MannyXR_left.SKM_MannyXR_left'; refuse to add a
duplicate!

LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp

FSGAssetUtils: :FImpl::AddGrabAttachPointSocket 442] Failed to add the socket
'GrabAttachPoint' to '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp
FSGAssetUtils: :FImpl: :AddSenseGloveSockets 587] Failed to add the grab attach
point socket to asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!
LogGeneric: Error: [ERROR
C:\Users\mamadou\Desktop\dev\SGHandbook\Plugins\SenseGlove\Source\SenseGloveE
ditor\Private\SGEditor\SGAssetUtils.cpp

FSGAssetUtils: :FImpl::AddSenseGloveSockets 741] Failed to add the SenseGlove
sockets to the asset '/Game/SGHandbook/SKM_MannyXR_left.SKM_MannyXR_left'!

s Help

B Output Log

Clearing All Existing Sockets

When you invoke the Clear Existing Sockets action, the Sockets Editor will ask for
your confirmation:

182 /461

The SenseGlove Unreal Engine Handbook

Message X

f‘_\ Are you sure you want to clear all the existing sockets? This cannot be undone!

Yes No

If successful, you will receive a message indicating all the existing sockets have been
cleared:

Message X

Successfully cleared all the existing sockets! If you wish the changes to persist, save
the modified asset(s) now!

After closing the dialog, the editors for the affected Skeleton and Skeletal Mesh
assets will open, displaying the affected assets with all sockets cleared:

183 /461

The SenseGlove Unreal Engine Handbook

Window Tools Help
SKM_MannyXR_left_S... *

| (9) ev esl & atio Create Anim Notifies Retarget Manager
Q

LOD Auto N P> x1,0 3]

Name Pravisiying Ref=rines Posa
- LODAD!
" root Currant derzan Sz 1,325
hand_| riznglas: 5,730
" Variicas: 3,23
UVICHANT B!
Avorog Siza: 152049

Anim B5 Asset... /" Curves x
Add Curve Q_ Find/Replace Curves
= v (Q

Curve Name Type Bones Max

" ring_03_l
< thumb_01_|
< thumb_02_1

o Content Drawer | Output Log] Cmd v

Configuring the SGPawn and Plugin Virtual Hand
Mesh Settings

The final step in setting up the virtual hand meshes is to configure the SGPawn and
Plugin virtual Hand Mesh Settings to ensure they utilize the newly created virtual
hand meshes.

Please visit Setting Up SGPawn, The Virtual Hand Mesh Settings, and how to setup
the Wrist Tracking Hardware sections for more information.

SGPawn Configuration

In the sGPawn Blueprint class, make sure to assign the appropriate Skeletal Mesh
Asset to the following components:

® HandLeft
e HandRight

184/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/

The SenseGlove Unreal Engine Handbook

® RealHandLeft
® RealHandRight

This ensures that the correct hand meshes are used for both virtual and real hands.

File Edit set View Debug Windov
(40)
BP_SGPawn x

= e : wgbiffv @Find °g HideUnrelated : £} ettings | # Class Defaults B, Simulation > : No debug object selected v

Components. = Viewport f tructio. %2 EventGraph X # Details X

+aAdd Q % b > t Grapt tal mesh asset

£ BP_SGPawn (Self)
sunce | Right-Click to Create New Nc
sualizerRight) Editin C++
Editin C++
htThumbFin Editin C++ ‘,Tr g off pins to build functionality. <=
dd Editin C++ %Sm
Right Index Fin er (Rig ge a del Editin C++
Right Thumb Fi C
itin C++
) Editin C++

Editin C++ -

Editin C++ [|
M vyBlueprint X

+aAdd Q

P B artnd T U

& Event Tick
B Compiler Results x
FUNCTION:

tructionSeript

VARIABLES

5 Content Drawer B Output Log BEcmd v ® Allsaved P’ Revi:

Plugin Virtual Hand Mesh Settings

Next, navigate to Project Settings > Plugins > SenseGlove > Virtual Hand Settings
> Mesh Settings and specify the correct left and right-hand meshes for:

e Left Hand Reference Mesh

® Right Hand Reference Mesh

This configuration guarantees that the tracking system correctly interprets the bone
transforms of the virtual hand meshes when generating FXRMotionControllerData .

Additionally, it allows the animation system to accurately use these bone transforms
when processing FXRMotionControllerData and animating the virtual hand meshes.

185/ 461

The SenseGlove Unreal Engine Handbook

u N Project Settings

Android SM5 Material Quality - Vulkan Q
HoloLens .
Plugins - SenseGlove
Import
i0S Material Quality
Linux ¢ a e ini, which is currently writable

Window

Plugins
AndroidFil
AVF Media
Dataflow

Fractu

IMG M
L
Modeling Mode Too
ara
gara Editor
OpenXR Input
Paper 2
Python

RenderDoc

irtualHand_Left SK

WMF Media

tualHand_Right SK_Se twalHand_Right

186 /461

The SenseGlove Unreal Engine Handbook

Setting Up the Wrist Tracking Hardware

To enable the SenseGlove Unreal Engine Plugin to track the gloves position and
rotation in the world, you need to specify a positional tracking hardware, referred to
as Wrist Tracking Hardware within the plugin. By default, if the Wrist Tracking
Hardware is not explicitly set, the plugin will attempt to automatically detect it by
identifying your Head-mounted display (HMD) hardware. However, this auto-
detection feature may not be entirely reliable, as it is still experimental, and it may
occasionally fail.

For detailed information, please visit the Wrist Tracking Hardware and HMD auto-
detection configuration section.

Prerequisites

Before you even consider setting up the Wrist Tracking Settings for the SenseGlove
Unreal Engine Plugin, please make sure that you have already taken all the necessary
steps in the Enabling XR_EXT_hand_tracking OpenXR Extension on VR Headsets
section for PCVR or Standalone modes. Otherwise, there's no guarantee that the
plugin can access the location data from the wrist-tracking hardware of your choice.
So, as the first troubleshooting measure, we always recommend double-checking the
relevant prerequisite guides above.

Meta Quest 2 Controller

For the Meta Quest 2, whether in PCVR or Standalone mode, the functional wrist-
tracking settings looks something like this:

187/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/

&y Project Settings

AndroidFileServer
AVF Media

Dataflow

Fracture Mode
Gameplay Cameras Editor
Geometry Cache
GooglePAD

IMG Media
Interactive Tool Pre
Level Sequence Editor
Modeling Mode Tools
Niagara

Niagara Editor
OpenXR Settings
Paper 2D

Python

RenderDoc
Resonance Audio
SenseGlove

Take Recorder

TCP Messaging

Template Sequence Editor

WMF Media

The SenseGlove Unreal Engine Handbook

Q

Plugins - SenseGlove

o' These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable

Sense Glove

HMDTracking Set

Wrist Tracki
Open Xl al Tracking
Tracking Hardware ntroller
Left Har

Right Hand N

Virtual Hand Setti

Export...

Import...

Meta Quest Pro Controller

For the Meta Quest 3, whether in PCVR or Standalone mode, the functional wrist-
tracking settings looks something like this:

188 /461

&y Project Settings

AndroidFileServer
AVF Media

Dataflow

Fracture Mode
Gameplay Cameras Editor
Geometry Cache
GooglePAD

IMG Media
Interactive Tool Pre
Level Sequence Editor
Modeling Mode Tools
Niagara

Niagara Editor
OpenXR Settings
Paper 2D

Python

RenderDoc
Resonance Audio
SenseGlove

Take Recorder

TCP Messaging

Template Sequence Editor

WMF Media

The SenseGlove Unreal Engine Handbook

Q

Plugins - SenseGlove

o' These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable

Sense Glove

HMDTracking Set

Wrist Tracki
Open Xl al Tracking
Tracking Hardware
Left Har

Right Hand N

Virtual Hand Setti

Export...

Import...

Meta Quest 3 Controller

For the Meta Quest 3, whether in PCVR or Standalone mode, the functional wrist-
tracking settings looks something like this:

189 /461

The SenseGlove Unreal Engine Handbook

&y Project Settings

AndroidFileServer Ql

AVE Media Plugins - SenseGlove

Dataflow Export... Import...

Fracture Mode
o' These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable
Gameplay Cameras Editor
Geometry Cache Sense Glove
GooglePAD
IMG Media
Interactive Tool Pre:
Level Sequence Editor
Modeling Mode Tools
Niagara HMDTracking Sef
Niagara Editor Wrist Track
OpenXR Settings Open XR al Tracking
Paper 2D Tracking Hardware ntroller
Python Left Har
Bendeii Right Hand v
Resonance Audio
SenseGlove I
Virtual Hand Setti
Take Recorder
TCP Messaging

Template Sequence Editor

WMF Media

HTC VIVE Tracker

For the HTC VIVE Pro using VIVE Trackers, which only supports the PCVR mode, the
functional wrist-tracking settings looks something like this:

190/ 461

The SenseGlove Unreal Engine Handbook

&y Project Settings

AndroidFileServer Ql

AVE Media Plugins - SenseGlove

Dataflow Export... Import...

Fracture Mode

e, o These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable
Geometry Cache Sense Glove
GooglePAD

IMG Media

Interactive Tool Presets

Level Sequence Edi

Modeling Mode Tools

Niagara

Niagara Editor

OpenXR Settings

Paper 2D Tracker

Python eftHa ce LeftFoot

RenderDoc RightFoot
nce Audio

SenseGlove

Take Recorder

Template Sequence Editor
UDP M ing
WMF Media

HTC VIVE Focus 3 Wrist Tracker

The wrist-tracking settings for the HTC VIVE Focus Vision, VIVE XR Elite, and VIVE
Focus 3, when using VIVE Wrist Trackers, will vary depending on the platform and
configuration in use.

PCVR Mode

When running in PCVR mode, the functional wrist-tracking settings looks something
like this:

191/461

The SenseGlove Unreal Engine Handbook

&y Project Settings

Q

AndroidFileServer

AVE Media Plugins - SenseGlove

Dataflow Export... Import...

Fracture Mode

e, o' These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable
Geometry Cache Sense Glove
GooglePAD

IMG Media

Interactive Tool Presets

Level Sequence Edit

Modeling Mode Tools

Niagara

Niagara Editor

OpenXR Settings

Paper 2D

Python eftHa LeftFoot
RenderDoc

Right Hand e RightFoot
Resonance Audio

SenseGlove

Take Recorder

TCP Messaging
Template Sequence Editor
UDP Messaging

WMF Media

Standalone Mode

Caution

The SenseGlove Unreal Engine Plugin v2.7.x is the last release series to
support Unreal Engine 5.4, and its support will be removed in future minor or
major releases. This is important to keep in mind if your target development
and deployment platform is HTC VIVE in Standalone Mode. Unfortunately, HTC
has not released any updates to their HTC ViveOpenXR plugin since December
6, 2024. Their latest release [1][2], ViveOpenXR Plugin v2.5.0, supports only
Unreal Engine 5.3 and 5.4.HTCVIVE PCVR Mode is unaffected and will remain
fully functional because, on Microsoft Windows, it is supported via the
OpenXRViveTracker Plugin, which is bundled with Unreal Engine and officially
maintained by Epic Games. If you still intend to target HTC in Standalone Mode,
you are welcome to continue using the latest SenseGlove Unreal Engine Plugin
v2.7.x, Which will retain HTC Standalone Mode support. However, please keep
in mind that once newer versions of the SenseGlove Unreal Engine Plugin are
released and UE 5.4 is no longer supported, the latest release of the plugin
supporting UE 5.4 will not receive new features, hardware support, or bug

192 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/index.html#htc-vive
https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://web.archive.org/web/20251113165658/https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://archive.ph/DlrLr
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/pcvr-mode/index.html#openxrvivetracker-plugin

The SenseGlove Unreal Engine Handbook

fixes. If at any point in the future HTC releases a new version of their
ViveOpenXR plugin that supports any Unreal Engine version we actively
support,+in accordance with our support policy and Platform Support Matrix,
we will make every reasonable effort to reintroduce HTC Standalone Mode
support.

When running in Standalone mode, the functional wrist-tracking settings looks
something like this:

& Project Settings

Q

Gameplay Cameras Editor

Geometry Cache Plugins - SenseGlove
GooglePAD

IMG Media

Export... Import...

b’ These settings are saved in DefaultSenseGloveSettings.ini, which is currently writable
Interactive Tool Presets

Level Sequence Editor e o
Live Link

Live Link Component

Live Link Sequence Editor

Modeling Mode Tools

Niagara

Niagara Editor

OpenXR Settings

Paper 2D

Python

RenderDoc LeftWristTracker v
Resonance Audio RightWristTracker v
SenseGlove

Take Recorder

TCP Messaging

Template Sequence Editor

UDP Messaging

Vive OpenXR

WMF Media

Virtual Hand Settings

193 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html

The SenseGlove Unreal Engine Handbook

Setting up the Grab/Release System

Setting up the SenseGlove Grab/Release System involves two main steps. The first
step, configuring the virtual hand meshes for both real and virtual hands, is handled
automatically by the plugin. The second step, which is also straightforward, involves
setting up any existing actor in the Unreal Blueprint Editor that you want to respond
to with haptic feedback when your SenseGlove device comes into contact with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into
contact with it.

2.In the components panel, clickthe + Add button, then type SGGrab into the
Search Components input field. Once found, click on sGGrab to add it to the
current actor. You can rename the sGGrab component to your desired name.

A(File Edit Asset View Debug Window Tools Help
BP_SimpleCube* x

= i@ Compile i =g Diff v fDFind % HideUnrelated : $f Class Settings # Class Defaults B, simulation

Components x = \Viewport f Construction Sc ®: Event Graph x . Details
o JE n [>
X SG

o — Right-Click to Create New Nodes.

A, FEWrist Tracker

2, Hevirtual Hand

Rkl
M My Blueprint SGGrab Component

+Add Q

GRAPHS

% EventGraph
& Event BeginPlay
€ Event ActorBeginOverlap
€ Event Tick

FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

Components
Cube

EVENT DISPATCHERS @

¥5 Content Drawer |8 Output Log Cmd v & 2Unsaved $* Revision Control

3. With the sGGrab component selected in the components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the
grab/release system to suit your needs.

194/ 461

The SenseGlove Unreal Engine Handbook

A(File Edit Asset View Debug Window | Tools Help
BP_SimpleCube* x

= | (o] 3(Zompw\e H '0- Diff v @ Find *g Hide Unrelated : {:} Class Settings ,/ Class Defaults P Simulation

Components x = Viewport f Construction Sc ®: Event Graph x . Details

+Add Q

© BP_SimpleCube (Self)

LY s > o}

Sense Glove

§Z Cube

& sasab Right-Click to Create New Nodes.

M My Blueprint x
+Add Q
GRAPHS
% EventGraph
& Event BeginPlay
€ Event ActorBeginOverlap
€ Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

Components
SGGrab

0,0
Cube

¥5 Content Drawer |8 Output Log Cmd v & 2Unsaved $* Revision Control

Note

Any property prefixed with Attachment is a parameter directly passed to
Unreal's FAttachmentTransformRules during the grab process, while any
property prefixed with Detachment is a parameter directly passed to Unreal's
FDetachmentTransformRules during the release process.

Caution

If AttachmentSocketName is unspecified, or incorrect the grabbable object will be
attached to the root bone of the virtual hand mesh, which probably is not ideal.

4. A key setting for the release system is located within your sGpawn instance. In
the Details panel for your sGPawn, find the Max Number of Hand Velocity
samples setting and adjust it according to your needs. This setting determines
the velocity of objects released from the hands by averaging the specified

number of frames. Optimizing this value depends on the framerate of your
simulation at runtime.

195/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window — o X

Oveview* BP_SimpleSp! BP_SGPawn X SGPawn

(A1)

= [&) ng Compile 3 -0' Diff v @ Find °*% Hide Unrelated : LF Class Settings | ¢ Class Defaults B, simulation »

Components X = Viewport JF Constructi % Event Graph x . Details X

+Add Q N~ [> Event Gra X MaxNum B &

£ BP_SGPawn (Self) Sense Glove

Scene Root (SceneRoot) Edit in C++ Right_click to Create New Max Number Of Ha

Tracker Right (WristTrackerRight) Ei
$Z Controller Visualizer Right (ControllerVis
“% Hand Right (HandRight) Edit in C++
®£ Right Thumb Fingertip Grab Collider (Rig
M My Blueprint x
+Add Q &
GRAPHS ®
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES

EVENT DISPATCHERS

Bp Content Drawer | Output Log cmd v & 2Unsaved §* Revision Contro

5. One last aspect of the grabbable actors to take into account for the grab
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
grabbable actor, it's necessary to set the Collision Presets tO Block All
inside the Details panel for the actor's mesh components.

196 / 461

The SenseGlove Unreal Engine Handbook

A(File Edit sset View Debug Window
Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= j Compile i =g Diff v @ Find *g HideUnrelated : {0F Class Settings ¢ Class Defaults B Simulation >

Components = Viewport JF Constructi % Event Graph x . Details X

+Add Q nv > 1t Graph X Collision|

© BP_SimpleCube (Self) Collision

v §% Cube Right_click to Create New Simulation Generates Hit Events

SGGrab
SGTouch

M My Blueprint
+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES B Compiler R
Components
SGGrab

SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

6. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are

crucial for notifying the grab system when the virtual hand meshes come into
contact with the actor.

197/ 461

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window T

Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= i@ Compile : =g Diff v @ Find * HideUnrelated i {3f Class Settings ¢ Class Defaults imulation >

Components X = Viewport J Constructi = Event Graph x . Details X

+ Add (e} n v [S > 1t Graph X Generate| B &

© BP_SimpleCube (Self) Physics
S Right-Click to Create New - x=«
rab

SGTouch
Collision

Simulatio tes Hit Events

[) Events
M My Blueprint i pEven

+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS [©)
™ tructionScript
MACROS [©)
ULUEEES [©] B Compiler R
Components
SGGrab
SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

e Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

198 /461

https://youtu.be/jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

e SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

199 /461

https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

Setting up the Touch System

Configuring the SenseGlove Touch System involves two key steps. The first step,
which is automatically handled by the plugin, is configuring the virtual hand meshes
for both real and virtual hands. The second step, which is also straightforward,
involves setting up any existing actor in the Unreal Blueprint Editor that you want to
respond to with haptic feedback when your SenseGlove device comes into contact
with it:

1. Open any existing actor in the Unreal Blueprint Editor that you would like to
respond to with haptic feedback when your SenseGlove device comes into

contact with it.

2.In the components panel, clickthe + Add button, then type SGTouch into the
Search Components input field. Once found, click on sGTouch to add it to the
current actor. You can rename the sGTouch component to your desired name.

A(File Edit Asset View Debug Window Tools Help

BP_SimpleCubex x

i | :.03 Compile * -0' Diff v @ Find *g Hide Unrelated : L Class Settings ~ # C Defaults B, Simulation

[¢] Components x = Viewport f Construction Sc %2 Event Graph x - Details
ey (. n = >

XSG
e Right-Click to Create New Nodes.

L, FEWrist Tracker

2, §evirtual Hand

R
M My Blueprint SGTouch Component

+Add Q
GRAPHS
®: EventGraph
€ Event BeginPlay
€ Event ActorBeginOverlap
& Event Tick
FUNCTIONS
¢ ConstructionScript
MACROS
VARIABLES

Components
Cube

EVENT DISPATCHERS @

5 Content Drawer |8 Output Log Cmd v & 2Unsaved §* Revision Control

3. With the SGTouch component selected in the Components panel, navigate to the
Details panel. Under the SenseGlove section, adjust the settings for the touch

200/ 461

The SenseGlove Unreal Engine Handbook

system to suit your needs.

= File Edit
()

BP_SimpleCubex

=
Componems X
+Add Q

© BP_SimpleCube (Self)
% Cube
A SGTouch

M My Blueprint
+Add Q
GRAPHS
= EventGraph
€ Event BeginPlay
& Event ActorBeginOverlz
< Event Tick
FUNCTIONS (Override v (®
~*# Construction Script
MACROS ®
VARIABLES ®

Components
SGTouch
Cube

EVENT DISPATCHERS @

5 Content Drawer

Asset

) Compile :

[Output Log

View Debug Window Tools Help

x

=g Diff v *% Hide Unrelated :

@ Find

F Construction Sc

{} Class Settings ‘/ Class Defaults 25 Simulation Pﬂ

= \Viewport %= EventGraph X #. Details

(8% x > Q

Sense Glove

Right-Click to Create New Nodes.

tile Ampli
tile Duraf

e is disabled and will not be called ‘ tile Frequency

pins to build functionality. Rendering

Component Tick

art with Tick Enable

This node is disabled and will not be called f
Drag off pins to build functionality.

Component Tags 0 Array element

Component Replication

Activation

BlCmd v = 1 Unsaved $* Revision Control v

4, One last aspect of the touchable actors to take into account for the touch
system to function properly is the collision settings of their mesh components.
If you'd like to prevent the virtual hand meshes from passing through a
touchable actor, it's necessary to set the Collision Presets tO Block All
inside the petails panel for the actor's mesh components.

201/461

The SenseGlove Unreal Engine Handbook

A(File Edit sset View Debug Window
Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= j Compile i =g Diff v @ Find *g HideUnrelated : {0F Class Settings ¢ Class Defaults B Simulation >

Components = Viewport JF Constructi % Event Graph x . Details X

+Add Q nv > 1t Graph X Collision|

© BP_SimpleCube (Self) Collision

v §% Cube Right_click to Create New Simulation Generates Hit Events

SGGrab
SGTouch

M My Blueprint
+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS
VARIABLES B Compiler R
Components
SGGrab

SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

5. Additionally, enabling Simulation Generates Hit Events and Generate Overlap
Events on the actors mesh components is mandatory. These settings are

crucial for notifying the touch system when the virtual hand meshes come into
contact with the actor.

202 /461

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window T

Oveviewx BP_SimpleSphere BP_SGPawn BP_SimpleCube x Actor

= i@ Compile : =g Diff v @ Find * HideUnrelated i {3f Class Settings ¢ Class Defaults imulation >

Components X = Viewport J Constructi = Event Graph x . Details X

+ Add (e} n v [S > 1t Graph X Generate| B &

© BP_SimpleCube (Self) Physics
S Right-Click to Create New - x=«
rab

SGTouch
Collision

Simulatio tes Hit Events

[) Events
M My Blueprint i pEven

+Add Q
GRAPHS
%2 EventGraph
& Event BeginPlay
& Event ActorBeginOverlap
& Event Tick
FUNCTIONS [©)
™ tructionScript
MACROS [©)
ULUEEES [©] B Compiler R
Components
SGGrab
SGTouch
Cube

EVENT DISPATCHERS @

Bp Content Drawer | Output Log cmd v & 1Unsaved §* Revision Control

Video Tutorials

The following tutorials, though for much older releases of the plugin, still provide in-
depth guidance on the same process:

e Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)

203 /461

https://youtu.be/jN4VcfXVrTA

The SenseGlove Unreal Engine Handbook

e SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

204 / 461

https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY

The SenseGlove Unreal Engine Handbook

The Plugin Settings

Once the SenseGlove Unreal Engine Plugin is enabled the plugin settings can be
accessed through Edit > Project Setting... inside your project's Unreal Editor.

Edit Window Tools Build Select Actor Help

E Platforms v

Undo History

'+ Editor Preferences...
Project Settings. ..
Plugins

Change the settings of the currently loaded project.

The SenseGlove Unreal Engine Plugin offers fine-grained control over various
aspects of its functionality through its settings system. It also allows you to override
specific settings from subcomponents when possible. In the following sections, we
will explore the settings and the override system in detail.

205/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/getting-started/plugin-verify-version-enable/

The SenseGlove Unreal Engine Handbook

> File Window Tools Help
(4r) .
& Project Settings

Plugins Q

AndroidFil Plugins - SenseGlove

Export... Import...
saved in DefaultSenseGloveSettings.ini, which is currently writable

meras Editor

Settings Categories

The plugin settings are organized into four main categories, and each of those might
contain its own sub-categories. These main categories are as follows:

e The Initialization Settings
e The Game User Settings
e The Tracking Settings

e The Virtual Hand Settings

206/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/initialization/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/game-user-settings/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/

The SenseGlove Unreal Engine Handbook

The Plugin Initialization Settings

The Initialization Settings section is designed to control how the SenseGlove Unreal
Engine Plugin is initialized, allowing you to customize its behavior to suit your
project's needs.

Sense Glove

“ﬂﬂﬂ“zﬂﬂﬂPEHIHPQE

Validate if Default C

bValidatelfDefaultClassesAreSGCompliant

If enabled, the plugin tries to check and validate whether the default for classes such
as GameMode, Gamelnstance, etc. are indeed SenseGlove classes or SenseGlove-
derived classes. If not, it attempts to set them. If you don't like this behavior for
whatever reason, consider disabling this option.

By default, this option is disabled.

Caution

Due to the current initialization mechanism, setting the default classes might
occasionally fail. Therefore, it's essential to verify that the default classes have
been correctly set. You can do this by checking the following sections in the
project settings:

® Project Settings > Project > Maps & Modes > Default Modes > Default
GameMode

® Project Settings > Project > Maps & Modes > Default Modes > Selected
GameMode > Default Pawn Class

® Project Settings > Project > Maps & Modes > Default Modes > Selected

GameMode > Player Controller Class

207/ 461

The SenseGlove Unreal Engine Handbook

® Project Settings > Project > Maps & Modes > Game Instance > Game
Instance Class
® Project Settings > Engine > General Settings > Default Classes >

Advanced > Game User Settings Class

For more information visit the SenseGlove default classes.

208 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/

The SenseGlove Unreal Engine Handbook

The Game User Settings

The Game User Settings control the behavior of the SenseGlove instance of
UGameUserSettings . The USGGameUserSettings class extends the functionality of
UGameUserSettings to provide enhanced customization options specifically for
applications that utilize the SenseGlove Unreal Engine Plugin.

Game User Set

Hardware Benchmarking Settings

Work Scale
CPUMultiplier

GPUMultiplier

209 /461

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings

The SenseGlove Unreal Engine Handbook

The Hardware-benchmarking Settings

The settings in this section are utilized by the

USGGameUserSettings: :SetEngineScalabilitySettings() method when the
Scalability parameter is set to ESGEngineScalabilitySettings::Auto.When the
engine scalability settings set to auto the graphics settings are determined by
running a hardware benchmark by calling the

UGameUserSettings: :RunHardwareBenchmark() . The settings listed here are basically
the parameters passed to UGameUserSettings::RunHardwareBenchmark() .

Game Use
Hardware Benchmarking Settings

Work Scale

CPUMultiplier

GPUMultiplier

WorkScale

The workScale parameter determines the intensity of the benchmark test. Higher
values result in more intensive testing, which can help achieve more accurate
scalability settings.

The default value is 10.

CPUMultiplier

The cPuMultiplier parameter allows you to adjust the impact of CPU performance
on the benchmark results. Increasing this value will emphasize CPU performance
more heavily in determining scalability settings.

210/ 461

https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/GameFramework/UGameUserSettings/RunHardwareBenchmark

The SenseGlove Unreal Engine Handbook

The default valueis 1.0f.

GPUMultiplier

The GPuMultiplier parameter lets you modify the influence of GPU performance on
the benchmark outcomes. A higher value will increase the weight of GPU
performance in setting scalability.

The default value is 1.0f.

211 /461

The SenseGlove Unreal Engine Handbook

The Tracking Settings

The tracking settings are primarily used by the SenseGlove Tracking module and
are divided into various subsections, each focusing on a specific aspect of tracking.
These subsections, along with the other settings directly provided by this section,
provide comprehensive control over the tracking functionalities. The subsections are
as follows:

e The Glove-tracking Settings
e The Hand-tracking Settings
e The HMD-tracking Settings
e The Wrist-tracking Settings

Tracking Settings

Fallback to Hand Tracking if No Glove Detected

Glove Tracking Settings

Hand Tracking Settings
HMDTracking Settings
Wrist Tracking Settings

Virtual Hand Settings

bFallbackToHandTrackinglfNoGloveDetected

Determines whether to fallback to hand-tracking, or not, when no SenseGlove device
is detected:

o If disabled, only a real glove will be tracked.
o Ifenabled, the plugin will fall back to hand-tracking when it's available and
supported by the HMD device.

Note

212 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hand-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/

The SenseGlove Unreal Engine Handbook

Disabling this option hides the hand-tracking settings section, while enabling it
makes the hand-tracking settings visible.

Glove Tracking Settings

Provides the tracking settings related to SenseGlove devices.

Hand Tracking Settings

The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

HMD Tracking Settings

Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.

Wrist Tracking Settings

Provides the tracking settings applicable to wrist-tracking hardware.

213 /461

The SenseGlove Unreal Engine Handbook

The Glove-tracking Settings

Provides the tracking settings related to SenseGlove devices.

Tracking Settings

Fallback to Hand Tracking if No Glove Detected
Glove Tracking Settings

Data Retrieval Refresh Rate
HMDTracking Settings

Wrist Tracking Settings

DataRetrievalRefreshRate

The glove data retrieval refresh rate. This affects the interval in which the tracking
module checks for glove connectivity and data retrieval.

The default is s 66Hz (data retrieval operations per second).

214/ 461

The SenseGlove Unreal Engine Handbook

The Hand-tracking Settings

The settings in this section only affects the hand-tracking functionality when it's
enabled and available. When enabled the bare hands can be used instead of
SenseGlove devices to interact within the VR simulation, of course without the
haptics feedback provided by the SenseGlove devices.

Important

If you don't see the hand-tracking settings, ensure that the option
bFallbackToHandTrackingIfNoGloveDetected is checked.

Tracking Settings
Fallback to Hand Tracking if No Glove Detected
Glove Tracking Settings
Hand Tracking Settings
Use More Specific Motion Source Names

Support Legacy Controller Motion Sources

HMDTracking Settings

Wrist Tracking Settings

bUseMoreSpecificMotionSourceNames

If disabled, (the default) the motion sources for hand tracking will be of the form
[Left|Right] [Keypoint] . If enabled, they will be of the form
HandTracking[Left|Right] [Keypoint] . It is recommended to be enabled to avoid
collisions between motion sources from different device types.

215/ 461

The SenseGlove Unreal Engine Handbook

bSupportLegacyControllerMotionSources

If enabled, hand tracking supports the Left and Right legacy motion sources. If
disabled, it does not. It is recommended to be disabled unless you need legacy
compatibility in older unreal projects.

216 /461

The SenseGlove Unreal Engine Handbook

The HMD-tracking Settings

Provides the tracking settings related to head-mounted displays (HDMs) and their
auto-detection functionality.

(1st), XR Elite (2

ViveHMDDetectionPriority

Determines which VIVE HMD to prioritize for detection, as the current detection
mechanism cannot differentiate between HTC VIVE Focus Vision, HTC VIVE XR Elite,
and HTC VIVE Focus 3.

The following values are possible:

217/ 461

The SenseGlove Unreal Engine Handbook

/*
* The HTC VIVE HMD detection priority for HTC devices that we cannot
distinguish.
*/
UENUM (BlueprintType)
enum class ESGViveHMDDetectionPriority : uint8
{
/* First try to detect HTC VIVE Focus Vision, then XR Elite, and then
Focus 3. */
FocusVision_XRElite_Focus3 UMETA(DisplayName = "Focus Vision (1st), XR
Elite (2nd), Focus3 (3rd)"),

/* First try to detect HTC VIVE Focus Vision, then Focus 3, and then XR
Elite. %/

FocusVision_Focus3_XRElite UMETA(DisplayName = "Focus Vision (1st),
Focus3 (2nd), XR Elite (3rd)"),

/* First try to detect HTC VIVE XR Elite, then Focus Vision, and then
Focus 3. x/

XRElite_FocusVision_Focus3 UMETA(DisplayName = "XR Elite (1st), Focus
Vision (2nd), Focus3 (3rd)"),

/* First try to detect HTC VIVE XR Elite, then Focus 3, and then Focus
Vision. x/

XRElite_Focus3_FocusVision UMETA(DisplayName = "XR Elite (1st), Focus3
(2nd), Focus Vision (3rd)"),

/* First try to detect HTC VIVE Focus 3, then Focus Vision, and then XR
Elite. %/

Focus3_FocusVision_XRElite UMETA(DisplayName = "Focus3 (1st), Focus
Vision (2nd), XR Elite (3rd)"),

/* First try to detect HTC VIVE Focus 3, then XR Elite, and then Focus
Vision. */

Focus3_XRElite_FocusVision UMETA(DisplayName = "Focus3 (1st), XR Elite
(2nd), Focus Vision (3rd)"),

}s

218 /461

The SenseGlove Unreal Engine Handbook

The Wrist-tracking Settings

Provides the tracking settings applicable to wrist-tracking hardware.

OpenXRPositionalTrackingProvider

Specifies the type of OpenXR provider to use in order to extract the positional
tracking data from the underlying XR system. If set to None, the plugin attempts to
set this automatically by considering a combination of approaches including, the
current value of TrackingHardware specified below, the platform it's targeted at, the
available OpenXR plugins, along with HMD auto-detection mechanism to specify a
compatible OpenXR tracking provider. Please note that the OpenXR provider
depends on the combination of plugins, platform, and the settings you use. For
example, it is possible to use a Vive Focus 3 Wrist Tracker on Microsoft Windows
along with the Epic OpenXRviveTracker plugin and check the option Emulate VIVE
Wrist Tracker as VIVE Tracker inside the VIVE Business Streaming application's
Input settings. In that case, the correct OpenXR positional tracking provider to use
would be openXxRviveTracker . However, using the official ViveOpenXR plugin on
Android, the correct OpenXR provider would be OpenXRViveWristTracker .

Caution

HMD auto-detection is currently an experimental feature and may fail because
HMD vendors occasionally change the properties utilized by the plugin for HMD
detection. If you encounter issues, such as incorrect tracker offsets, it is
recommended to explicitly specify the tracking hardware.

Caution

Due to highly experimental nature of the HMD auto-detection feature, the HTC
VIVE Focus Vision, HTC VIVE Focus 3, and HTC VIVE XR Elite cannot be
distinguished from each other in the current iteration. However, since the
tracker devices and offsets for all these headsets are the same, this should not

219/461

The SenseGlove Unreal Engine Handbook

affect the performance or any functionality. The order in which the HMD is
detected can be specified through the HMD-tracker setting
ViveHMDDetectionPriority .

TrackingHardware

Specifies the type of tracking hardware to use. If set to None, the plugin attempts at
HMD auto-detection to automatically specify a compatible tracking hardware. If set
to custom, any desired location and rotation can be specified.

At the moment the following hardware are supported:

e Quest 2 Controllers

Quest 3 Controllers

Quest Pro Controllers

VIVE Focus 3 Wrist Trackers
VIVE Trackers

Wrist Tracking Settings

Tracking Hardware None

Left Hand None
Custom
Right Hand i ce VIVE Tracker
Quest 2 Controller
VIVE Focus 3 Wrist Tracker
Quest Pro Controller

Quest 3 Controller

Caution

HMD auto-detection is currently an experimental feature and may fail because
HMD vendors occasionally change the properties utilized by the plugin for HMD
detection. If you encounter issues, such as incorrect tracker offsets, it is
recommended to explicitly specify the tracking hardware.

Caution

220/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority

The SenseGlove Unreal Engine Handbook

Due to highly experimental nature of the HMD auto-detection feature, the HTC
VIVE Focus Vision, HTC VIVE Focus 3, and HTC VIVE XR Elite cannot be
distinguished from each other in the current iteration. However, since the
tracker devices and offsets for all these headsets are the same, this should not
affect the performance or any functionality. The order in which the HMD is
detected can be specified through the HMD-tracker setting
ViveHMDDetectionPriority .

TrackingHardwareLocationOffsetLeftHand

Sets a custom location offset for left hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

TrackingHardwareLocationOffsetRightHand

Sets a custom location offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

TrackingHardwareRotationOffsetLeftHand

Sets a custom rotation offset for left hand's wrist-tracking hardware.

Note

221/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/hmd-tracking.html#vivehmddetectionpriority

The SenseGlove Unreal Engine Handbook

I This setting is visible and valid only if TrackingHardware is set to Custom.

TrackingHardwareRotationOffsetRightHand

Sets a custom rotation offset for right hand's wrist-tracking hardware.

Note

This setting is visible and valid only if TrackingHardware is set to Custom.

LeftHandMotionSource

Determines the motion source for the left hand. For Oculus HMDs, this is usually
Left, and for VIVE HMDs using VIVE Wrist Trackers, VIVE Business Streaming, and
SteamVR, it's typically LeftFoot . For the openxRvive plugin on Android Standalone

Mode using the VIVE Wrist Trackers, this typically is LeftWristTracker .

Note

For VIVE devices using SteamVR, the motion source hardware for the left hand
can be specified by the user through the SteamVR app.

RightHandMotionSource

Determines the motion source for the right hand. For Oculus HMDs, this is usually
Right, and for VIVE HMDs using VIVE Wrist Trackers, VIVE Business Streaming, and
SteamVR, it's typically RightFoot . For the openxRvive plugin on Android Standalone
Mode using the VIVE Wrist Trackers, this typically is RightWristTracker .

Note

222 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/

The SenseGlove Unreal Engine Handbook

For VIVE devices using SteamVR, the motion source hardware for the right hand
can be specified by the user through the SteamVR app.

DebuggingSettings

Provides debugging options for visually debugging the wrist tracker.

Overriding the Wrist-tracking Settings from the Wrist
Tracker Component

It's possible to override some of the wrist tracker settings through the details panel
of any specific Wrist Tracker Component. When overriden by enabling the
SenseGlove > Wrist Tracking Settings Override > Override Plugin Settings option
inside the details panel, these settings take precedence over the plugin's global
settings.

223 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/debugging.html

File Edit A

ew

View Del Window 0 Help

&

Project Settings 8 pl

i@ compile I ®igDiffv @Find @ Hide Unrelated

Componen X

+ Add Q

= Viewport
n~
Pawn (Self)

Scene Root (SceneRoot) Editin C++
w Ay, Wrist Tracker Right (WristTrackerRight) Editin C++

$# Controller Vi Right (ControllerVisual Rigl

‘% Hand Right (HandRight) Edit in C++

%% Right Thumb Fingertip Grab Collider (RightThumbF
Right Middle Fingertip Grab Collider (Right\M leFi
Right Index Fingertip Grab Collider (RightindexFing
Right Thumb Fingertip Touch Collider (RightThumk
Right Ind
Right Middle Fingertip Tou
Right Ring Fingertip Touch C

Right Pinky Fingertip Touch Collider (RightPinkyFir
M My Blueprint
+aAdd Q

GRAPHS

nt ActorBeg
© Event Tick
FUNCTIONS
~*f ConstructionScript
MACROS

VARIABLES

B5 Content Drawer B output Log EICmd v

The SenseGlove Unreal Engine Handbook

224/ 461

o debug objec
& Details

Q

Sockets

Depth Priority
Thic
Component Tick

h Tick Enat

on Control v

The SenseGlove Unreal Engine Handbook

The Wrist-tracking Debugging Settings

Provides debugging options for visually debugging the wrist tracker.

Tracking Settings
Fallback to Hand Tracking if No Glove Detected
Glove Tracking Settings
HMDTracking Settings
Wrist Tracking Settings
Tracking Hardware None
Left Hand Motion Source Left
Right Hand Motion Source Right
Debugging Settings
Draw Debug Wrist Tracker
Debug Wrist Tracker Settings
Length
¥hxis Color
YAxis Color
ZAxis Color
Persistent Lines
Life Time Modifier
Depth Priority
Thickness

Virtual Hand Settings

225/ 461

The SenseGlove Unreal Engine Handbook

bDrawDebugWristTracker

If enabled, visualizes the debug wrist trackers where possible.

DebugWristTrackerSettings

Visible and valid only if bbrawbDebugGizmo is enabled.

226 /461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Settings

The Virtual Hand Settings are utilized by various SenseGlove modules such as Debug,
Editor, Tracking, and the main module. These settings are divided into several
subsections, each focusing on a specific aspect of the virtual hand functionality.
Together with the settings provided directly in this section, they offer comprehensive
control over any system or component that utilizes the virtual hand. The subsections
are as follows:

e The Animation Settings
e The Debugging Settings
e The Grab Settings

e The Haptics Settings

e The Mesh Settings

e The Touch Settings

Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings

Debugging Settings

Grab Settings

Haptics Settings
Mesh Settings

Touch Settings

bVisibleWhenHandDataUnavailable

Used by the Virtual Hand Component to determine its visibility when no hand data,
either from a SenseGlove or hand-tracking, is available. If enabled, the virtual hand
mesh remains visible even when no data is available. By default, this setting is

227 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/debugging.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/grab.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/haptics.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/touch.html

The SenseGlove Unreal Engine Handbook

disabled, providing users of the simulation with a clear indicator that no hand data is
currently available.

Animation Settings

Controls how the virtual hand model is animated by the animation system.

Debugging Settings

Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.

Grab Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The sGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

Haptics Settings

Utilized by the haptics system.

228 /461

The SenseGlove Unreal Engine Handbook

Mesh Settings

Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

Touch Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The sGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

Overriding the Virtual Hand Settings from the Wrist
Tracker Component

It's possible to override some of the virtual hand settings through the details panel
of any specific Virtual Hand Component. When overriden by enabling the SenseGlove

> Virtual Hand Settings Override > Override Plugin Settings option inside the
details panel, these settings take precedence over the plugin's global settings.

229/ 461

File Edit A

ew
i@ Compile :

Componen X
+ Add Q
Pawn (Self)

Scene Root

ntroller Vi

= & Hand Right (HandRight)

Right Mi
Right Index Fing
Right Thumb Fing
Right Ind

Right Mi

eneRoot)
2r Right (WristTr

Right (Controlle

The SenseGlove Unreal Engine Handbook

View Del Window Help

& Project Settin & pi BP_SGPawn*

sghifft~ @Find @ Hide Unrelated

= Viewport

& Details

Q

Materials

Right-Click to Create New N« ..

Event Graph X

n~

Editin C++
Editin C++
Rigl

ckerRight)

Sense Glove

Unavailable

e Fingertip Tou

Right Ring Fingertip Touch C

Right Pinky Fingertip Touch Collider (RightPinkyFir

M My Blueprint
+aAdd Q

GRAPHS

nt ActorBeg
© Event Tick
FUNCTIONS
~*f ConstructionScript

MACROS

VARIABLES

B5 Content Drawer

B output Log

Component Tick

h Tick Ena

EICmd v

230/ 461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Animation Settings

Controls how the virtual hand model is animated by the animation system.

Unavailable

ply Bone Location

AnimationBoneRotationCorrectionOffset

Specifies the offset to apply to each bone's rotation when translating hand pose data
to the virtual hand bones. This is useful if the virtual hand mesh was imported with
an initial rotation. For example, the virtual hand model shipped with Unreal Engine's
VRTemplate typically has an initial 90.0f degrees rotation on the yvaw axis. By
default, this option has been set up with the Unreal Engine's VRTemplate virtual
hand model in mind.

bShouldAnimationApplyBonelLocation

When enabled, the animation system applies the joint locations to the current virtual
hand mesh bones in addition to the joint rotation. Otherwise, only the joint rotations
are applied, and joint locations are ignored, leaving the bone locations untouched on
the virtual hand mesh when animating it. Enabling this option typically improves the
virtual hand animation. By default, this option is enabled.

231/461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Debugging Settings

Primarily used for visually debugging low-level hand data. When enabled, the Virtual
Hand Component visualizes a debug virtual hand by drawing all individual hand
joints.
Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings
Debugging Settings
Draw Debug Virtual Hand
Drawing Mode Mone
Grab Settings
Haptics Settings

Mesh Settings

Touch Settings

bDrawDebugVirtualHand

If enabled, visualizes the debug virtual hand where possible.

DrawingMode

Determines the virtual hand drawing mode. If set to CubicJoints, for every joint a
debug cube will be drawn. If set to GizmoJoints, for every joint a debug gizmo will be
drawn.

232 /461

The SenseGlove Unreal Engine Handbook

DebugCubicHandSettings

Visible and valid only if bDrawDebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode: :CubicJoints.

firtual Hand

Drawing Mode Cubic Joints

DebugGizmoHandSettings

Visible and valid only if bDrawbebugVirtualHand is enabled and DrawingMode has been
set to ESGDebugVirtualHandDrawingMode: :GizmoJoints .

233/461

The SenseGlove Unreal Engine Handbook
Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings
Debugging Settings

Draw Debug Virtual Hand

Drawing Mode Gizmo Joints

Debug Gizmo Hand Settings

Length
XiAxis Color
Yixis Color
Ziyis Color
Persistent Lines
Life Time Modifier
Depth Priority
Thickness

Grab Settings

Haptics Settings

Mesh Settings

Touch Settings

234 /461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Grab Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Grab system to function.

The sGPawn also utilizes these settings to set up the grab colliders on the virtual
hand components.

Virtual Hand Settings

ta Unavailable

GrabAttachPointSocketName

The default socket name for the grab attach point, usually located at the palm of the
hand.

235/461

The SenseGlove Unreal Engine Handbook

GrabAttachPointSocketTransform

The default socket transform (location, rotation, scale) for the grab attach point,
usually located at the palm of the hand.

DefaultColliderSize

The default collider size for the fingers' grab colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's grab collider, usually located at the
tip of the thumb finger.

IndexColliderSocketName

The default socket name for the index finger's grab collider, usually located at the tip
of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's grab collider, usually located at the
tip of the middle finger.

236 /461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Haptics Settings

Utilized by the haptics system.

Virtual Hand Settings
Visible when Hand Data Unavailable
Animation Settings

Debugging Settings

Haptics Settings

Auto Stop All Haptics on End Play

Mesh Settings

Touch Settings

bAutoStopAllHapticsOnEndPlay

Forces all haptics to stop automatically on the EndPlay event. This is useful for
situations where the simulation has ended, but ongoing haptic feedback might
remain active on the glove indefinitely. By default, this setting is enabled.

237 /461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Mesh Settings

Utilized by the SenseGlove Tracking module to account for the current virtual hand
mesh when generating hand pose data, resulting in more accurate glove or hand
data representation and also smoother animations.

Left Hand Reference Mesh None

Right Hand Reference Mesh None

Distal Phal

Thumb

Ring

virtualHand_Left'

Hand_Right'

LeftHandReferenceMesh

The virtual hand model for the left hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FxRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh

238/461

The SenseGlove Unreal Engine Handbook

compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints
data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

RightHandReferenceMesh

The virtual hand model for the right hand is to be used by the SenseGlove Tracking
module to generate all the 26 joint data present in the FXRMotionControllerData .
The main reason the Tracking module requires a virtual hand mesh as a reference
is the SenseGlove Hand Pose format only provides 15 joints. So, the remaining joint
data for FXRMotionControllerData are calculated from a virtual hand mesh
compatible with the Epic rig and also the values specified by
DistalPhalangesLengthSettings . Furthermore, when calculating the existing joints
data, their current locations and rotations are taken into account in calculating the
resulting FXRMotionControllerData .

By default, no virtual hand mesh is set.

Caution

If no virtual hand mesh is set, the Tracking module will fall back to hard-coded
values extracted from the standard virtual hand model shipped by Unreal
Engine VRTemplate. This may result in distorted hand mesh while animating a
hand in case a different hand mesh other than the default Epic virtual hand
mesh is being set on the virtual hand components.

239/461

The SenseGlove Unreal Engine Handbook

DistalPhalangesLengthSettings

The length of distal phalanges that cannot be retrieved from any virtual hand mesh
compliant with the Epic standard rig. Also, the SenseGlove Hand Pose format does
not provide these. This is used by SenseGlove Tracking module to calculate an
FXRMotionControllerData the all 26 joints. The values you specify here depend on
the shape of the virtual hand mesh and the defaults are approximated for the virtual
hand model shipped with the Unreal Engine VRTemplate.

RootBoneRotationCorrection

Used mostly by the SenseGlove Tracking module and sGPawn to offset for any initial
rotation during the virtual hand mesh import process. This is the case for example
with the virtual hand model shipped with Unreal Engine's VRTemplate, which
typically has an initial -90.0f degrees rotation on the vaw axis. By default, this
option has been set up with the Unreal Engine's VRTemplate virtual hand model in
mind.

LeftHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

RightHandDefaultReferenceBoneTransforms

Read-only and for internal use only.

240/ 461

The SenseGlove Unreal Engine Handbook

LeftHandBoneNames

Read-only and for internal use only.

RightHandBoneNames

Read-only and for internal use only.

DefaultLeftHandMeshPath

Read-only and for internal use only.

DefaultLeftHandMeshPathOnly

Read-only and for internal use only.

DefaultRightHandMeshPath

Read-only and for internal use only.

DefaultRightHandMeshPathOnly

Read-only and for internal use only.

241/ 461

The SenseGlove Unreal Engine Handbook

The Virtual Hand Touch Settings

Utilized by the SenseGlove Sockets Editor to automatically generate the hand sockets
required by the Touch system to function.

The sGPawn also utilizes these settings to set up the touch colliders on the virtual
hand components.

Data Unavailable

TouchPinkyCollider

DefaultColliderSize

The default collider size for the fingers' touch colliders.

ThumbColliderSocketName

The default socket name for the thumb finger's touch collider, usually located at the
tip of the thumb finger.

242/ 461

The SenseGlove Unreal Engine Handbook

IndexColliderSocketName

The default socket name for the index finger's touch collider, usually located at the
tip of the index finger.

MiddleColliderSocketName

The default socket name for the middle finger's touch collider, usually located at the
tip of the middle finger.

RingColliderSocketName

The default socket name for the ring finger's touch collider, usually located at the tip
of the ring finger.

PinkyColliderSocketName

The default socket name for the pinky finger's touch collider, usually located at the
tip of the pinky finger.

243 /461

The SenseGlove Unreal Engine Handbook

Overriding The Plugin Settings

The override system allows you to customize and override the global settings for the
SenseGlove Unreal Engine Plugin through specific subcomponents where applicable.
This feature enables more precise control over the behavior of individual
components within your project.

The SenseGlove Virtual Hand Component

The Virtual Hand Component provides the ability to override certain aspects of the
global plugin settings, allowing for tailored interactions and behaviors specific to
virtual hands. For more details, refer to the Virtual Hand Settings section.

The SenseGlove Wrist Tracker Component

The Wrist Tracker Component enables overriding of specific global plugin settings,
providing flexibility in wrist tracking configurations. For additional information, see
the Wrist-tracker Settings section.

244 | 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/#overriding-the-virtual-hand-settings-from-the-virtual-hand-component
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/#overriding-the-wrist-tracking-settings-from-the-wrist-tracker-component

The SenseGlove Unreal Engine Handbook

The SenseGlove Console Commands

The SenseGlove Unreal Engine Plugin offers a variety of utility console commands to
enhance your development experience.

Important

To ensure the SenseGlove console commands are registered and recognized by
Unreal Engine, set the default Game Instance class to SGGameInstance or a
subclass of it. This can be done through: Project Settings > Project > Maps &
Modes > Game Instance > Game Instance Class . Failing to do so will resultin the
error: Command not recognized: SG_x in the logs. For more details, refer to

SGGameInstance.

SGGameUserSettings Console Commands

Caution

Before running any of the following console commands, ensure that the default
Game User Settings class is set to SGGameUserSettings or a subclass of it. This
can be configured via: Project Settings > Engine > General Settings > Default
Classes > Advanced > Game User Settings Class . Failure to set this correctly will
cause your simulation or editor to crash upon calling any of the following
console commands. For more information, refer to SGGameUserSettings .

SG_GetEngineScalabilitySettings

This console command prints the current Engine Scalability Settings to the logs.

245/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

SG_SetEngineScalabilitySettings

This console command sets the Engine Scalability Settings for both the current game
and the editor. It accepts a Scalability parameter with the following valid values:

® Low

® Medium

e High

e Epic

® (Cinematic

® Auto

Note

The Auto option is used for benchmarking purposes. It will adjust the engine
scalability settings to one of the other levels based on the benchmarking
results.

246/ 461

The SenseGlove Unreal Engine Handbook

Deploying to Android (Standalone)

Epic Games provides official documentation for setting up Unreal projects targeting
Android:

e Setting Up Android SDK and NDK for Unreal
e Android Quick Start

Here are a few important notes to consider:

e Since SenseGlove provides native libraries built for Android, it's crucial to
consult the Platform Support Matrix before deciding to deploy your project to
Android.

e Currently, all third-party native libraries are built against Android NDK API Level
29.

e On Meta Quest devices, building against Android SDK API Level 29 or 32 has
been tested and is supported.

e Avideo tutorial on deploying to Oculus Quest devices and Android is also
available.

Caution

247/ 461

https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-android-sdk-and-ndk-for-unreal
https://dev.epicgames.com/documentation/en-us/unreal-engine/setting-up-unreal-engine-projects-for-android-development
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
https://youtu.be/zU8Nf4ssOO0

The SenseGlove Unreal Engine Handbook

As ofthe v2.1.0 release of the SenseGlove Unreal Engine Plugin, the
XR_EXT_hand_tracking OpenXR extension is required for the plugin to function.
Without this OpenXR extension, the plugin won't output any glove data. Unreal
Engine provides XR_EXT_hand_tracking support through the openxrR and
OpenXRHandTracking plugins. However, for this to function on Android in
standalone mode in conjunction with other plugins such as Meta XR or
ViveOpenXR plugins, or hand-tracking as a fallback mechanism when no glove
data is available, extra configuration steps and considerations are required.

Third-Party Tutorials

This Android Standalone Mode Deployment tutorials series covers how to build and
deploy Unreal Engine 5.5 Projects APK to Android and Meta Quest 35/3/Pro/2 in
standalone mode. Furthermore, it covers the how-to on enabling OpenXR hand-
tracking on Android with Meta XR (Quest 3S/3/Pro/2) and HTC VIVE OpenXR (Focus
Vision/XR Elite/Focus 3) plugins.

248/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/#bfallbacktohandtrackingifnoglovedetected
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/#bfallbacktohandtrackingifnoglovedetected
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/third-party-tutorials/

The SenseGlove Unreal Engine Handbook

Third-Party Tutorials: Android
Standalone Mode Deployment

On-Click Unreal Engine 5.7 Android Packaging & APK
Build Tutorial | Meta Quest & HTC VIVE Standalone

This tutorial provides a complete, streamlined guide to packaging and deploying
Unreal Engine 5.7 projects to Android devices in standalone mode, with full support
for Meta Quest and HTC VIVE headsets. Viewers learn how to correctly install and
configure every required component, including Android Studio, SDK, NDK, JDK, and
Visual Studio, using either a manual setup, or an open-source one-click PowerShell
installer featured in the video.

The tutorial walks through creating a fresh Unreal Engine VR Template project,
configuring Android project settings, enabling ADB device debugging, and generating
a working APK using the updated Project Launcher workflow in UE 5.7. It also covers
how to integrate the Meta XR and HTC VIVE OpenXR plugins to ensure proper VR
recognition and hand-tracking functionality on each platform.

By the end, developers understand how to go from a blank project to a fully
packaged and deployable Android APK, with functioning VR, correct device targeting,
and reliable deployment pipelines on both Meta Quest and HTC VIVE standalone
headsets.

249/ 461

The SenseGlove Unreal Engine Handbook

Build & Deploy Unreal Engine 5.5 Projects APK to
Android & Meta Quest 35/3/Pro/2 in Standalone Mode

This video will guide you through the process of building and deploying an Unreal
Engine 5.5 project (or any version newer than 4.24) to Android Standalone Mode for
Meta Quest 2 and Quest 3 devices. The steps outlined here should also apply to
other Android-based VR headsets.

It will show you where and how to download and install the necessary prerequisites,
such as the Android SDK, NDK, Java Development Kit (JDK), and Microsoft Visual
Studio. Next, it will configure both the development environment and Unreal Engine
for a successful build. Finally, it will walk you through deploying your project to your
VR headset and troubleshooting common errors to ensure a smooth experience.

250/ 461

The SenseGlove Unreal Engine Handbook

Unreal Engine OpenXR Hand-Tracking on Android
with Meta XR (Quest 3S/3/Pro/2) and HTC VIVE
OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

The OpenXR hand-tracking provided by Epic won't work out of the box on Android
when projects are deployed in standalone mode to HMDs such as Meta Quest or
HTC VIVE devices.

In this tutorial you'll learn how to deploy your Unreal Engine projects to Android with
functional hand-tracking on the following head-mounted displays:

e Meta Quest 3S

e Meta Quest 3

e Meta Quest Pro

e Meta Quest 2

e HTCVIVE Focus Vision
e HTCVIVE XR Elite

e HTCVIVE Focus 3

251 /461

The SenseGlove Unreal Engine Handbook

252 /461

The SenseGlove Unreal Engine Handbook

Upgrade Guide

The transition from v2.0.x to v2.1.x introduces numerous changes, including
several breaking changes. The effort required to upgrade your project will vary
depending on its complexity and which features of the SenseGlove Unreal Engine
Project you are using. However, if you are working with a simple Blueprint project like
SGBasicDemo, the upgrade process is quite straightforward. We successfully
upgraded SGBasicDemo to SGBasicDemo-OpenXR by following the procedure
outlined below.

These are the notable changes that might affect your project:

e The SenseGlove Virtual Hand and Wrist Tracker components no longer rely on
the SenseGlove Hand Pose data from the underlying SenseGlove API. Instead,
they use FXRMotionControllerData .

e The virtual hand animation system has been revamped to use
FXRMotionControllerData and no longer relies on SenseGlove Hand Angles. This
means the virtual hand meshes are animated using world space transforms
instead of parent bone space transforms.

e The Allbreaker virtual hand meshes have been removed and are no longer
supported as they are incompatible with the new OpenXR tracking and
animation system.

Caution
Please consult the changelog before upgrading your project to see if any change
affects or breaks your current project.

Note

For upgrading older versions of the plugin to v2.e.0, a YouTube tutorial is
available.

253 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html
https://youtu.be/VbWfoep-Hsg

The SenseGlove Unreal Engine Handbook

1. Remove the existing Plugins/SenseGlove folder from your project.

2. Obtain the latest v2.1.x version of the plugin either from the Epic Games
Launcher or Microsoft Azure DevOps Repositories and place it in the
Plugins/SenseGlove folder that you've just removed.

3. It might be best to clean up and remove the following folders from your project
before generating the project files or attempting to open your project with the
Unreal Editor. This might prevent a certain class of build issues:

- Binaries
- Intermediate
- Saved

4, Build your project using your favorite IDE if it's a C++ project, or open your
project's .uproject file with the Unreal Editor and wait for the Editor to build
the necessary binaries and open the project.

5. Remove the Allbreaker virtual hand meshes if you are using them, as they are
no longer compatible with the new animation system.

6. Import and set up a set of compatible virtual hand meshes such as the
VRTemplate virtual hand meshes, and configure the materials, rigid bodies, and

254 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/epic-games-launcher.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/installation/microsoft-azure-devops-repositories.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/

The SenseGlove Unreal Engine Handbook

the SenseGlove Grab and Touch Sockets using the SenseGlove Sockets Editor.

7.Set up the SGPawn to use the new virtual hand meshes for the HandLeft,
HandRight , RealHandLeft, and RealHandRight components.

8. Adjust the Virtual Hand Mesh Settings and ensure the Left Hand Reference
Mesh and Right Hand Reference Mesh are set correctly.

9. Check and adjust the Virtual Hand Animation Settings as needed.

10. You might also want to set up the Wrist Tracking Hardware to use the new
experimental HMD auto-detection feature. This allows the plugin to
automatically configure the wrist tracking hardware at runtime, rather than
limiting your builds to a specific HMD.

11.Set up the sGGameInstance and SGGameUserSettings if you want to use the new
SenseGlove console commands or take advantage of the Engine Scalability
Settings to achieve higher framerates in your project.

12. Additionally, the latest release introduces the ability to use hand-tracking as an
alternative to SenseGlove hardware—albeit without haptic feedback—for rapid
development and testing. It's also recommended to enable the Fallback to
HandTracking if No Glove Detected feature to seamlessly switch to hand-
tracking when a glove isn't connected.

13. If all steps have been followed correctly, your project should now be fully
compatible with the new plugin release.

255 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-virtual-hand-meshes/#setting-up-the-senseglove-grab-and-touch-sockets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/mesh.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/virtual-hand/animation.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#game-user-settings-and-engine-scalability-settings
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/glove-tracking.html

The SenseGlove Unreal Engine Handbook

Optimizing Your Project for Higher FPS

Enhancing the performance and framerate of Unreal Engine VR applications,
whether running standalone or streaming from a PC, can sometimes be challenging
depending on the nature of your project. This guide will walk you through generic
strategies that can significantly boost your project's performance and framerate

with minimal effort.

Meta Quest Link Advanced Graphics Preferences

When streaming from a PC to Meta Quest devices, the default refresh rate is set at
72 Hz . However, you can increase this to 120 Hz, which not only enhances the
refresh rate but also reduces the rendering resolution, potentially improving
performance. Follow these steps to make the adjustment:

1. Open the Meta Quest Link app and navigate to the Devices tab.

256 /461

The SenseGlove Unreal Engine Handbook

Search

Home
Store Devices
Library
Events

Devices
Quest 3 and Touch

Settings Active

Quest 3 Connected
Left Touch
Right Touch

Pair device

Follow list

Notifications

Quest 2 and Touch

Help Centre Not Connected

2. Choose the device for which you would like to tweak the refresh rate.

257 /461

The SenseGlove Unreal Engine Handbook

Home
Store
Library
Events
Devices

Settings

Quest 3 and Touch
@ Connected and Active

® USB 3 connection recommended

Quest 3 Microphone ~
Set the input volume for your Quest 3 microphone
)
Follow list

Quest 3 Headphones ~

Notifications Set the output volume for your headset speakers and

headphone jack
Help Centre

<)

3.In the device settings, scroll down to the Advanced section and select Graphics

Preferences .

258 /461

The SenseGlove Unreal Engine Handbook

HISal v AUUIL U CUTIpULE
Home Hear VR audio from both your headset and
default computer audio device

Store

Hear Computer Audio in VR

LR Hear computer audio from your headset

. when using your desktop in VR
vents

Devices
Settings Graphics Preferences

Refresh Rate (72 Hz)
Rendering Resolution (4128 x 2208)

Device Setup

USB Test

Quest 3 Support

Follow list

Notifications

Help Centre

4. Choose your desired refresh rate. In this case select a refresh rate of 120 Hz.
After making your selection, click ok, and the Meta Quest Link app will restart
to apply the changes.

259 /461

The SenseGlove Unreal Engine Handbook

Graphics Preferences

Set your Quest 3 graphics preferences. Recommended settings are based
on your computer’s specs. Learn More

Refresh Rate

72 Hz (Recommended)
80 Hz
90 Hz

® 120 Hz

Automatic (Recommended)

Save & Restart

5. Once the Meta Quest Link app restarts, go back to the pevices tab, select your
device, and confirm the refresh rate setting under Advanced > Graphics

Preferences .

260 /461

The SenseGlove Unreal Engine Handbook

HISal v AUUIL U CUTIpULE
Home Hear VR audio from both your headset and
default computer audio device

Store

Hear Computer Audio in VR

LR Hear computer audio from your headset

. when using your desktop in VR
vents

Devices
Settings Graphics Preferences

Refresh Rate (120 Hz)
Rendering Resolution (3200 x 1728)

Device Setup

USB Test

Quest 3 Support

Follow list

Notifications

Help Centre

6. Now, open your Unreal Engine project and navigate to Project Settings.
Under Engine > General Settings > Framerate, you can fine-tune and
experiment with the framerate settings to match your project's requirements.

261/461

The SenseGlove Unreal Engine Handbook

& Project Settings

Engine al
Al System Anim Blueprints
Animation
Animation Modifiers
Audio Framerate
Chaos Solver

Cinematic Camera

Min 1200
ol Rig

Cooker

Crowd Manager

Data Driven CVars
Debug Camera Controller
Enhanced Input
Enhanced Input (Editor Only)
Gameplay Debugger
Garbage Collection
General Settings
Hierarchical LOD

Input

Interchange

Interchange gITF
Interchange MaterialX

Landscape

HTC VIVE Specific Optimizations in Standalone Mode

Headsets like the HTC VIVE Focus 3 and Focus Vision have larger framebuffers,
higher eye-buffer size, wider fields of view (FOV), and varying refresh rates compared
to HMDs like the Meta Quest series. As a result, performance can differ when
running the same content across these devices.

Setting a Custom Pixel Density

If performance on the Focus 3 or Focus Vision is lower than on the Quest, we
recommend adjusting the Pixel Density to approximately o.8 (or a value suited to
your content). This reduces the eye buffer size, and matches the resolution of Quest
2, hence increasing FPS:

262 /461

The SenseGlove Unreal Engine Handbook

& Event BeginPlay F Execute Console Command F Get Console Variable Float Value

F Print String
=P | =] >—FFFFF 7P

Command Variabl Return Value
vr.Pi

In String
[vr-PixelDensity 0.8

) Print to Screen
Specific Player F Append
Print to Log
Retumn Value
Text Color [l
Add pin ®

Development.Only.
N

Setting a Lower Refresh Rate

The viveopenxR plugin provides various Blueprint functions to query the supported
refresh rates and adjust the current refresh rate according to your needs:

263 /461

The SenseGlove Unreal Engine Handbook

All Actions for this Blueprint Context Sensitive
% Refresh Rate
Vive Open XR

WIELEYIRefresh Rate
Nl nEECRNEEVARefresh Rate

v cc vt EYARefresh Rate

Nl G ES N EVARefresh Rate

But, before you'd be able to make these adjustments you have to enable the relevant
settings by navigating to Edit > Project Settings > Plugins > Vive OpenXR and
ensure the Enable Display Refresh Rate option is checked. This option enables the
OpenXR extension XR_FB_display_refresh_rate support which allows your
application to dynamically adjust the display refresh rate in order to improve the
overall user experience. Please note that You need to restart the engine to apply new
settings after changing this setting.

264 /461

The SenseGlove Unreal Engine Handbook

& Project Settings X

Linux
Mac
Enable Cosmos Controller

Windows
Simultaneous Interaction

Xcode Projects
Enable Simultaneous Interaction
Plugins [et
AndroidFileServer Enable Hand Interaction
AVF Media Advanced
Dataflow Use HTC Hand Interaction
Fracture Mode Tracker
Gameplay Cameras Editor Enable Wrist Tracker
Geometry Cache Enable Ultimate Tracker (Beta)
GooglePAD Advanced
IMG Media
Interactive Tool Presets HTC Eye Tracker
Level Sequence Editor
WARNING: Enable HTC Eye Tracker will conflict with OpenXREyeTracker plugin. Please disable OpenXREyeTracker plugin if HTC Eye Tracker feature is enabled

Live Link

nable HTC Eye Tracker (Beta
Live Link Component RS HICES D)

Live Link Sequence Editor Facial Tracking

Modeling Mode Tools Enable Facial Tracking
Niagara Rendering

Niagara Editor Enable Sharpening (Beta)
OpenXR Settings

Paper 2D

Python Passthrough
RenderDoc Enable Passthrough
Resonance Audio

SenseGlove

Take Recorder Mixed Realty

TCP Messaging Enable Anchor (Beta)
Template Sequence Editor Enable Plane Detection
UDP Messaging
Vive OpenXR

Enable Scene Understanding
Restart required to apply new

Display Refresh Rate
LoD settings

WMF Media
nable Display Refresh Rate Restart Later
Enable Display Refresh Rate Restart Now start Lat

In order to query all the available display refresh rates use the Blueprint function

Enumerate Display Refresh Rates:

" Print String (GiFor Each Toop "7 Print String
| —————— P Exec Loop Body p ————————— P
In String ! Array Array Element In String

Available display refresh rates:

Print to Screen

Array Index O» Print to Screen

Completed > Print to Log

Print to Log
Text Color [l

Text color [l

= Duration [8,0]
& Event BeginPlay T Branch » Key [None |
Y O» Key | None
L4 » True B ‘7‘ Development Only.
Condition False [Development Only’ "
N
Entmerate Display Refresh Rates
play
Out Display Refresh Rates i

Return Value
F Print String

In String
Failed to enumerate the available display refresh rates!]

Print to Screen
Print to Log
Text Color
Duration [8,0]

O Key [None

Development orly
~

At the moment with most devices it returns 75.0 and 90.0 hzvalues.

265 /461

The SenseGlove Unreal Engine Handbook

To change the current display refresh rate use the Blueprint function Request
Display Refresh Rate':

f Print String
]

In String
[Successfully requested a new display refresh rate]

Print to Screen
Print to Log
Text Color .
Duration ‘BT]
> Key [None |

Development Only;
& Event BeginPlay f Request Display Refresh Rate 1! EN ~
b—> »P— > True

In Display Refresh Rate Return Value Condition False [
[750] \ F Print String
»

In String
[Failed to request a new display refresh rate!]

Print to Screen
Print to Log
Text Color
Duration ‘ET]
D Key [None |

Development Only
~

To obtain the current display refresh rate use the Blueprint function Get Display
Refresh Rate':

266 /461

The SenseGlove Unreal Engine Handbook

f Print String
»
In String

Print to Screen

& Event BeginPlay -IE Branch Print to Log

»P ——» True B Text Color [l

Condition False T Duration [8,0]
AT e Return Value NG
T Gel Display Refresh Rate [The current display refresh rate: | O ey [None |
A N

Add pin ® Development Only,

A

Out Display Refresh Rate B

Return Value

f Print String
»

insting
\ Failed to get the display refresh rate! |

Print to Screen
Print to Log
Text Color
Duration [8,0]
» Key [None |

Development Only.
~

If you're looking to squeeze more performance out of your HTC VIVE HMD in
standalone mode, consider lowering the target refresh rate from 96hz to 75hz . This

can help reduce GPU workload and improve overall stability while still maintaining a
somewhat smooth experience.

HTC VIVE Optimal Rendering Settings

As a last resort consider adding the following rendering settings to your project's
DefaultEngine.ini under the /Script/Engine.RendererSettings section and
experiment with them until you obtain your desired results:

267 /461

The SenseGlove Unreal Engine Handbook

[/Script/Engine.RendererSettings]
r.Mobile.DisableVertexFog=True
r.Mobile.AllowDitheredLODTransition=False
r.Mobile.AllowSoftwareOcclusion=False
r.Mobile.VirtualTextures=False
r.DiscardUnusedQuality=False
r.AllowOcclusionQueries=True
r.MinScreenRadiusForLights=0.030000
r.MinScreenRadiusForDepthPrepass=0.030000
r.MinScreenRadiusForCSMDepth=0.010000
r.PrecomputedVisibilityWarning=False
r.TextureStreaming=True
Compat.UseDXT5NormalMaps=False
r.VirtualTextures=False
r.VirtualTexturedLightmaps=False

r.VT.TileSize=128

r.VT.TileBorderSize=4

r.vt.FeedbackFactor=16

r.VT.EnableCompressZlib=True
r.VT.EnableCompressCrunch=False
r.ClearCoatNormal=False
r.ReflectionCaptureResolution=128
r.ReflectionEnvironmentLightmapMixBasedOnRoughness=True
r.ForwardShading=True

r.VertexFoggingForOpaque=True
r.AllowStaticLighting=True
r.NormalMapsForStaticLighting=False
r.GenerateMeshDistanceFields=False
r.DistanceFieldBuild.EightBit=False
r.GeneratelLandscapeGIData=False
r.DistanceFieldBuild.Compress=False
r.TessellationAdaptivePixelsPerTriangle=48.000000
r.SeparateTranslucency=True
r.TranslucentSortPolicy=0
TranslucentSortAxis=(X=0.000000,Y=-1.000000,Z=0.000000)
r.CustomDepth=1

r.CustomDepthTemporalAAJitter=True
r.PostProcessing.PropagateAlpha=2
r.DefaultFeature.Bloom=False
r.DefaultFeature.AmbientOcclusion=False
r.DefaultFeature.AmbientOcclusionStaticFraction=True
r.DefaultFeature.AutoExposure=False
r.DefaultFeature.AutoExposure.Method=0
r.DefaultFeature.AutoExposure.Bias=1.000000
r.DefaultFeature.AutoExposure.ExtendDefaultLuminanceRange=True
r.DefaultFeature.AutoExposure.ExtendDefaultLuminanceRange=True
r.EyeAdaptation.EditorOnly=False

268 /461

The SenseGlove Unreal Engine Handbook

r.DefaultFeature.MotionBlur=False
r.DefaultFeature.LensFlare=False
r.TemporalAA.Upsampling=False
r.SSGI.Enable=False
r.AntiAliasingMethod=3
r.DefaultFeature.LightUnits=1
r.DefaultBackBufferPixelFormat=4
r.Shadow.UnbuiltPreviewInGame=True
r.StencilForLODD1ither=False
r.EarlyZPass=3
r.EarlyZPassOnlyMaterialMasking=False
r.DBuffer=True
r.ClearSceneMethod=1
r.VelocityOutputPass=0
r.Velocity.EnableVertexDeformation=0
r.SelectiveBasePassOutputs=False
bDefaultParticleCutouts=False
fx.GPUSimulationTextureSizeX=1024
fx.GPUSimulationTextureSizeY=1024
r.AllowGlobalClipPlane=False
r.GBufferFormat=1
r.MorphTarget.Mode=True
r .GPUCrashDebugging=False
vr.InstancedStereo=True
r .MobileHDR=False
vr.MobileMultiView=True
r .Mob1ile.UseHWsRGBEncoding=True
vr.RoundRobinOcclusion=False
vr.0DSCapture=False
r.MeshStreaming=False
r.WireframeCullThreshold=5.000000
r.RayTracing=False
r.RayTracing.UseTextureLod=False
r.SupportStationarySkylight=True
r.SupportLowQualityLightmaps=True
r.SupportPointLightWholeSceneShadows=True
r . SupportAtmosphericFog=True
r.SupportSkyAtmosphere=True
r.SupportSkyAtmosphereAffectsHeightFog=False
r.SkinCache.CompileShaders=False
r.SkinCache.DefaultBehavior=1
r.SkinCache.SceneMemoryLimitInMB=128.000000
r .Mobile.EnableStaticAndCSMShadowReceivers=True
r .Mobile.EnableMovablelLightCSMShaderCulling=True
r.Mobile.AllowDistanceFieldShadows=True
r.Mobile.AllowMovableDirectionallLights=True
r .Mob1ileNumDynamicPointLights=4
r .MobileDynamicPointLightsUseStaticBranch=True
269 /461

The SenseGlove Unreal Engine Handbook

.Mobile.EnableMovableSpotlights=False
.Mob1ile.EnableMovableSpotlightsShadow=False
.GPUSk1in.Supportl6BitBoneIndex=False
.GPUSkin.Limit2BoneInfluences=False
.SupportDepthOnlyIndexBuffers=True
.SupportReversedIndexBuffers=True
.LightPropagationVolume=False
.Mobile.AmbientOcclusion=False
.GPUSkin.UnlimitedBoneInfluences=False
.GPUSkin.UnlimitedBoneInfluencesThreshold=8
.Mobile.PlanarReflectionMode=0
bStreamSkeletalMeshLODs=(Default=False,PerPlatform=())
bDiscardSkeletalMeshOptionalLODs=(Default=False,PerPlatform=())
VisualizeCalibrationColorMaterialPath=None
VisualizeCalibrationCustomMaterialPath=None
VisualizeCalibrationGrayscaleMaterialPath=None
.Mobile.AntiAliasing=3

.Mobile.FloatPrecisionMode=2

.OpenGL.ForceDXC=0

.DynamicGlobalIlluminationMethod=1
.ReflectionMethod=1

.Shadow.Virtual.Enable=0
.Lumen.TranslucencyReflections.FrontLayer.EnableForProject=False

S OSY O Y 8O

S Y 85O

Game User Settings and Engine Scalability Settings

Unreal Engine offers predefined graphics quality profiles known as Engine Scalability
Settings, which can be easily adjusted to optimize performance. These settings can
be modified directly within the Unreal Editor through the Settings menu on the
toolbar or dynamically at runtime using code. Importantly, these settings are
universal, meaning changes made in the Unreal Editor will apply to the game when
run in PIE (Play In Editor) mode, and settings adjusted via code will also affect the
editor itself.

270/ 461

Quality Low

Resolution Scale

View Distance Near
Anti-Aliasing Low
Post Processing Low
Shadows Low
Global lllumination Low
Reflections Low
Textures Low
Effects Low
Foliage Low
Shading Low

Medium

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Monitor Editor Performance?

Note

SGGameUserSettings .

The SenseGlove Unreal Engine Handbook

Cinematic

Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic
Cinematic

Item Labe

A, Ove

v

ICF Settings v

™ World Settings
& Project Settings...

% Plugins

Allow Translucent Selection
Allow Group Selection

Strict Box Selection

Box Select Occluded Objects
Show Transform Widget

Show Subcomponents

Engine Scalability Settings
Material Quality Level

Preview Rendering Level

Volume « @

Enable Actor Snapping
Distance ®
Enable Socket Snapping

Enable Vertex Snapping
Enable Planar Snapping

Hide Viewport Ul
Previewing

T

CTRL+SHIFT+G

CTRL+SHIFT+K

The SenseGlove Unreal Engine Plugin includes specialized console commands
that allow you to switch between different Engine Scalability Settings on the fly.
Please note that these commands require you to set up SGGamelnstance and

In order to switch between various Engine Scalability Settings, you can use the Get

Game User Settings Blueprint function and then cast it to SGGameInstance.

271 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/console-commands/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameinstance.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

All Actions for this Blueprint Context Sensitive

X Get Game User Settings|

Sense Glove
Game Framework
Game User Settings

F Get Engine Scalability Settings
Settings
f
Settings

vi |Get Game User Settings

Important

Unreal Engine's default Blueprint functions only allow you to set Engine
Scalability Settings to Low or Epic.To access the full range of settings,
SGGameUserSettings extends Blueprint access to all Engine Scalability Settings
and includes hardware benchmarking to detect the optimal settings. Therefore,
it's essential to make sGGameUserSettings oOr a subclass of it the default Game
User Settings class to utilize all these features.

2721461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sggameusersettings.html

The SenseGlove Unreal Engine Handbook

The following Blueprint code from the SGBasicDemo-OpenXR example scene
demonstrates how to bind numeric keys 1 to 5 to set various Engine Scalability
Settings, and key o to utilize hardware benchmarking to determine the optimal
Engine Scalability Settings:

e 0:Use hardware-benchmarking to determine the optimal Engine Scalability
Settings.

e 1:Set Engine Scalability Settings to Low .

e 2:Set Engine Scalability Settings to Medium.

e 3:Set Engine Scalability Settings to High.

e 4:Set Engine Scalability Settings to Epic.

e 5:Set Engine Scalability Settings to Cinematic .

View Deby

=ig Diff v SDFind *g Hide Unrelated gs 4 aults : No debug object selected v

[Components x = ; c x 2 Details
+ Add e

Use hardware benchmarking to determine the optimal engine scalability settings

F Get Game User Settings 7% Cast To SGGameUserSettings F Set Engine Scalability Settings
L=—=

Return Value Object

Set engine scalability settings to Low
- 7 Get Game User Settings 3 Cast To SGGameUserSettings F Set Engine Scalability Settings
» »—»

Retumn Value Object

Set engine scalability settings to Medium

F Get Game User Settings %3 Cast To SGGameUserSettings

MAcROS g » P =———up
VARIABLES Retu alue Object

EVENT DISPATCHERS

|8 OutputLog ~ EJCmd v

2731461

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

The SenseGlove Unreal Engine Handbook

File Edit Asset View Debug Window Tools Help
B Output Log BP_SGPawn

=gDiffv @Find *Q HideUnrelated :

Details

Set engine scalability settings to High

&3 F Get Game User Settings ¥ Cast To SGGameUserSettings F Set Engine Scalability Settings
Pressed - ———— B PR ==L

rab er
Released > Retum Value Object Cast Failed > Game User Set

rab Collider (

 Right In p Grab C Ky,

£ Right Thum

Set engine scalability settings to Epic

F Get Game User Settings %3 Cast To SGGameUserSettings F Set Engine Scalability Settings
» —====0 [===)
Return Value Object Cast Failed Game User Settings

As SGGame User Settings Scalability
Epic

Ea5

Set engine scalability settings to Cinematic

FUNCTIONS

Cons cript F Get Game User Settings ¥% Cast To SGGameUserSettings F Set Engine Scalability Settings
MACROS e =D =P

VARIABLES Released [Return Value Object Cast Failed D Game User Settings
EVENT DISPATCHERS Key As SGGame User Settings Scalability

§ i T -
ntentDrawer |8 OutputLog [Cmd ~ B &7omPiler Restits: B Allsaved 3

Tip

The SGBasicDemo-OpenXR includes an example 3D widget actor that displays
the current FPS and Engine Scalability Settings. This widget can be placed within
a VR scene and is located in A1l > Content > Blueprints > UI >
BP_FPS3DWidget . The underlying UMG widget can be found at A1l > Content >

Blueprints > UI > WB_FPS within the Content Browser for the SGBasicDemo-
OpenXR example scene.

274/ 461

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

The SenseGlove Unreal Engine Handbook

#. Class Defaults | 3

FUNCTIONS
MACROS
VARIABLES

=

EVENT DISPATCHERS
Details

(o}

Defauit

| Outputlog EZICmd v ® AllSaved }? Revis

Optimizing Unreal Projects for Mobile

We have the SGBasicDemo-OpenXR project, which has been optimized for mobile.
You can explore the project configuration by reviewing the settings inside the
Config folder and compare them with your own project settings. In addition, here
are some crucial guidelines and settings that you may want to adjust for further
optimization:

General Rendering Settings

Forward Shading: Enable Forward Shading for better performance. It's more
efficient on mobile platforms.

275/ 461

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

Q

Forward Renderer

Forward Shading

Vertex Fogging for Opaque

Translucency

Separate Translucency

Translucent Sort Policy Sortby Distance v
Translucent Sort Axis 0,0
Local Fog Volume Apply on Translucent

Enable Order Independent Transparency (Experimental)

VR

Stereo Foveation Level (Experimental) Disabled
Dynamic Foveation (Experimental)

Instanced Stereo

Mobile HDR

Mobile Multi-View

Round Robin Occlusion Queries

Postprocessing

Custom Depth-Stencil Pass Enabled
Custom Depth with TemporalAA Jitter

Enable alpha channel support in post processing (experimental). Disabled
Default Settings

Bloom

Ambient Occlusion

Q
Engine - Rendering

Export...

ok’ These settings are saved in DefaultEngine.ini, which is currently writable

Mobile

Mobile Shading Forward Shading v
Allow Deferred Shading on OpenGL
Enable GPUScene on Mobile
Mobile Anti-Aliasing Method Multisample Anti-Aliasing (MSAA) v

Mobile Float Precision Mode Use Half-precision v

Allow Dithered LOD Transition

Support movable light CSM shader culling

Mobile Local Light Setting Local Lights Enabled v
Enable clustered reflections on mobile forward

Mobile Ambient Occlusion

Mobile DBuffer Decals

Planar Reflection Mode

Support desktop Gen4 TAA on mobile

Materials

Game Discards Unused Material Quality Levels

Clear Coat Enable Second Normal

Enable Rough Diffuse Material

Import...

Mobile HDR: Disable this setting. Mobile HDR can significantly affect performance,
especially on lower-end devices.

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

(o}
VR
Stereo Foveation Level (Experimental)
Dynamic Foveation (Experimental)
Instanced Stereo
Mobile HDR
Mobile Multi-View
Round Robin Occlusion Queries
Postprocessing
Custom Depth-Stencil Pass
Custom Depth with TemporalAA Jitter
Enable alpha channel support in post processing (experimental).
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Disabled

Enabled

Disabled

Auto Exposure Histogram

10

Instanced Stereo: Enable this setting. It is a rendering technique used in Unreal
Engine primarily for virtual reality (VR) applications. Its main purpose is to optimize

the rendering process when creating VR experiences by reducing the workload
associated with rendering two slightly different images for each eye.

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Q

VR

Stereo Foveation Level (Experimental)

Dynamic Foveation (Experimental)

Instanced Stereo

Mobile HDR

Mobile Multi-View

Round Robin Occlusion Queries

Postprocessing

Custom Depth-Stencil Pass

Custom Depth with TemporalAA Jitter

Enable alpha channel support in post processing (experimental).
Default Settings

Bloom

Ambient Occlusion

Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure

Auto Exposure

Auto Exposure Bias

Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast

Local Exposure Shadow Contrast

Motion Blur

Lens Flares (Image based)

2771461

Disabled

Enabled

Disabled

Auto Exposure Histogram

10

The SenseGlove Unreal Engine Handbook

Mobile Multi-View: Enable this setting. It is a rendering feature in Unreal Engine
designed to optimize the performance of Virtual Reality (VR) applications on mobile
devices, particularly when using VR platforms like Google Daydream or Samsung
Gear VR. It is similar in concept to Instanced Stereo, but specifically optimized for
mobile hardware.

& Project Settings

General Settings

Hierarchical LOD
Input Disabled
Interchange
Interchange gITF
Interchange MaterialX
Landscape
Level Sequence
Mesh Budget
Mesh Stats Custom De cil Pa Enabled
MetaSounds
Navigat z n xperimental). Disabled
Navigation System
Network
Physics
Rendermg) for baked lighting)
Rendering Overrides (Local)
Slate Settings

stogram W
Streaming
Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Mobile Anti-Aliasing Method: Use FXAA (Fast Approximate Anti-Aliasing) Or MSAA
(Multisample Anti-Aliasing) . MSAA is often preferred for mobile as it gives better
visual quality without a huge performance hit.

2781461

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Reflection Capture Resolution: Reduce this value (e.g., 128 or 256) to decrease the
memory usage.

¥ Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering

Rendering Overrides (Local)

Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

Q

Engine - Rendering
Export...

uh' These settings are saved in DefaultEngine.ini, which is currently writable

Mobile

Mobile Shading Forward Shading v

Allow Deferred Shading on OpenGL

Enable GPUScene on Mobile

Mobile Anti-Aliasing Method Multisample Anti-Aliasing (MSAA) v
Mobile Float Precision Mode Use Half-precision v

Allow Dithered LOD Transition

Support movable light CSM shader culling

Mobile Local Light Setting Local Lights Enabled v
Enable clustered reflections on mobile forward

Mobile Ambient Occlusion

Mobile DBuffer Decals

Planar Reflection Mode Usual

Support desktop Gen4 TAA on mobile

Materials

Game Discards Unused Material Quality Levels

Clear Coat Enable Second Normal

Enable Rough Diffuse Material

Q
Reflections
Reflection Method
Reflection Capture Resolution
Reduce lightmap mixing on smooth surfaces
Support global clip plane for Planar Reflections

Lumen

High Quality Translucency Reflections
Software Ray Tracing Mode Detail Tracing
Ray Traced Translucent Refractions

Shadows

Shadow Map Method

Hardware Ray Tracing

Support Hardware Ray Tracing

Ray Traced Shadows

Texture LOD

Path Tracing

Software Ray Tracing

Generate Mesh Distance Fields

Distance Field Voxel Density

Nanite

Nanite

Import...

The SenseGlove Unreal Engine Handbook

Texture Settings

Enable virtual texture support: Disable this setting.

& Project Settings

Q

Hierarchical LOD Virtual Textures

Input Enable virtual texture

General Settings

Interchange

Interchange gITF

Interchange MaterialX

Landscape

Level Sequence

Mesh Budget

Mesh Stats

MetaSc Working Color Space
Working Col

Navigation

Network

Physics

Rendering

Rendering Overri

Global Illumination
Slate Settings
Dynal al llluminatios
Streaming
Reflections
Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Texture Streaming: Enable texture streaming to ensure textures load progressively,
which helps in reducing memory usage.

280 /461

The SenseGlove Unreal Engine Handbook

& Project Settings

Ql

Hierarchical LOD Textures

General Settings

Input
Interchange
Interchange gITF Virtual Textures
Interchange MaterialX Enable virtual texture support
Landscape
Level Sequence
Mesh Budget
Mesh Stats
Meta
Mesh
Navigation System
Network
Physics
Rendering
Rendering Overrides (Local)
Slate Settings
Streaming
Texture Encoding

Global Illumination
User Interface

Dynamic Global lllumination Method
Virtual Texture Pool

Reflecti
World Partition etiections

Editor

Texture Quality: Lower the overall texture quality to Medium or Low depending on
the target device capabilities.

Texture Compression: Use ASTC compression for Android to ensure the textures
are optimized for mobile devices.

Lighting Settings

Use Static Lighting: Prefer static lighting over dynamic lighting for better
performance.

Lightmap Resolution: Use a lower lightmap resolution (e.g., 32 or 64) for mobile to
reduce memory usage.

Dynamic Shadows: Disable or minimize the use of dynamic shadows. If required,
use CSM (Cascaded Shadow Maps) with low resolution and distance.

Distance Field Shadows/Ambient Occlusion: Disable these features as they are
costly on mobile platforms.

281/461

The SenseGlove Unreal Engine Handbook

& Project Settings

Q

Default Settings

General Settings

Hierarchical LOD

Input Bloom
Interchange

e or baked lighting)
Interchange MaterialX

Landscape

Level Sequence

Mesh Budget

Mesh Stats

MetaSounds

Navigation Mesh

Navigation St

Network

Physics

Rendering

Rendering Overrid Light Units
Slate Settings A orph target blend weight,
Streaming Advanced
JEREEIEC Default Screen Percentage

User Interface 0

Virtual Texture Pool i
d on

World Partition
Manual

Editor ercenta Manual

Post-Processing Settings

Bloom, Lens Flares, and Auto Exposure: Minimize or disable these effects as they
can be performance-intensive.

282 /461

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

The SenseGlove Unreal Engine Handbook

(o}
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Anti-Aliasing Method
MSAA Sample Count

Light Units

Maximum absolute value accepted as a morph target blend weight,

Advanced
Default Screen Percentage
Manual Screen Percentage
Screen Percentage Mode for Desktop renderer
Screen Percentage Mode for Mobile renderer

Screen Percentage Mode for VR

Auto Exposure Histogram v

1.0

Multisample Anti-Aliasing (MSAA) v
4x MSAA v
Candelas

50

1000
Based on display resolution v
Manual v

Manual

Screen Space Reflections: Disable this setting as it is costly in terms of performance

on mobile devices.

Motion Blur: Disable this feature to save on processing power.

& Project Settings

General Settings
Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget

Mesh Stats
MetaSounds
Navigation Mesh
Navigation System
Network

Physics

Rendering
Rendering Overrides (Local)
Slate Settings
Streaming

Texture Encoding
User Interface
Virtual Texture Pool

World Partition

Editor

Q
Default Settings
Bloom
Ambient Occlusion
Ambient Occlusion Static Fraction (AO for baked lighting)
Auto Exposure
Auto Exposure
Auto Exposure Bias
Extend default luminance range in Auto Exposure settings
Local Exposure Highlight Contrast
Local Exposure Shadow Contrast
Motion Blur

Lens Flares (Image based)

Anti-Aliasing Method
MSAA Sample Count

Light Units

Maximum absolute value accepted as a morph target blend weight,

Advanced
Default Screen Percentage
Manual Screen Percentage
Screen Percentage Mode for Desktop renderer
Screen Percentage Mode for Mobile renderer

Screen Percentage Mode for VR

283 /461

Auto Exposure Histogram

1.0

Multisample Anti-Aliasing (MSAA) v
4x MSAA v
Candelas

50

100,0
Based on display resolution v
Manual v

Manual

The SenseGlove Unreal Engine Handbook

Materials and Shaders

Material Complexity: Use simple materials with few instructions and limit the
number of textures and shader nodes.

Specular Highlights: Consider reducing or disabling specular highlights on materials
to save on performance.

LOD (Level of Detail) Models: Ensure that LODs are set up correctly for all models,
with appropriate reduction in polygon count for distant objects.

Level of Detail (LOD) Settings
Mesh LODs: Configure LODs for all meshes to reduce polygon count at distances.

Screen Size: Adjust screen size settings for LODs to ensure they switch at
appropriate distances for mobile screens.

Engine Scalability Settings

Resolution Scale: Lower the resolution scale (e.g., 70% or 80%) to improve
performance while maintaining visual quality.

View Distance: Set to Medium or Low to reduce the amount of detail rendered at
long distances.

Shadows: Set to Low or Off for better performance.
Textures: Set to Medium or Low depending on the device’s capabilities.

Effects: Set to Low to reduce the complexity of visual effects.

Note

See Game User Settings and Engine Scalability Settings for more details.

284 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/index.html#game-user-settings-and-engine-scalability-settings

The SenseGlove Unreal Engine Handbook

Physics and Collision

Physics Simulation: Limit the use of physics simulation where possible, as it can be
expensive on mobile devices.

Collision Complexity: Use simple collision meshes instead of complex ones to
improve performance.

Audio Settings

Sample Rate: Lower the sample rate to reduce memory usage and processing load.

Number of Audio Channels: Limit the number of audio channels used in the project
to reduce CPU usage.

Rendering API

Vulkan vs OpenGL ES: Test your project with both Vulkan and OpenGL ES to see
which provides better performance on your target devices. Vulkan often offers
better performance but may not be supported on all devices.

Culling

Frustum Culling: Ensure that frustum culling is enabled to avoid rendering objects
outside of the camera’s view.

Occlusion Culling: Enable occlusion culling to avoid rendering objects that are not
visible due to being blocked by other objects.

285/461

& Project Settings

General Settings

Hierarchical LOD
Input

Interchange
Interchange gITF
Interchange MaterialX
Landscape

Level Sequence
Mesh Budget
Mesh Stats
MetaSounds
Navigation Mesh
Navigation St
Network

Physics
Rendering
Rendering Overrid:
Slate Settings
Streaming
Texture Encoding
User Interface
Virtual Texture Pool
World Partition

Editor

Q

Culling

Warn about no precomput
Textures

ure Streaming

XTS Normal h

Virtual Textures

The SenseGlove Unreal Engine Handbook

-aded Shadow

bility

Enable virtual support

Working Color Space

Working

286 /461

The SenseGlove Unreal Engine Handbook

Third-Party Tutorials: Optimizing Your
Project for Higher FPS

Optimizing Unreal Engine VR Projects for Higher
Framerates (Meta Quest, HTC VIVE, FFR, ETFR, NVIDIA
DLSS, AMD FSR, and Intel XeSS Tips Included!)

This beginner-friendly tutorial, covers how to significantly boost the performance of
your Unreal Engine VR projects, whether you're building for standalone (mobile) or
PCVR (desktop) on devices such as Meta Quest, HTC VIVE, Varjo, or Valve Index.

It covers step-by-step how to:

Convert a regular project into a VR-ready experience.

Optimize for both standalone (Android) and PCVR (Windows) platforms.
Tweak key rendering, lighting, and texture settings for smoother gameplay.
Configure Meta XR and HTC VIVE OpenXR plugins to fine-tune settings for the
best performance possible.

Utilize and fine-tune engine scalability settings.

Explore powerful optimization features like DLSS, FSR, XeSS, and Foveated
Rendering

Even if you're new to VR development, this guide breaks it down with visuals, clear
examples, and actionable tips to take your framerate from sluggish to silky smooth.

287 /461

The SenseGlove Unreal Engine Handbook

288 /461

The SenseGlove Unreal Engine Handbook

Safe and Reliable Glove Access in
Blueprint

Since the Blueprint APl uses the underlying C++ API to access the SenseGlove
hardware, it often has to deal with C++ pointers. Those who are familiar with C++ and
in particular with the Unreal Engine UObject Garbage Collection System are aware
that:

e As a general rule of thumb, a pointer should be validated before dereferenced,
meaning before accessing the pointer a NuLL check should be performed,
otherwise if the pointer is NULL the program is going to crash upon access.

e Unreal implements a garbage collection scheme whereby UObjects that are no
longer referenced or have been explicitly flagged for destruction will be cleaned
up at regular intervals. The engine builds a reference graph to determine which
UObjects are still in use and which ones are orphaned. The ones that are
orphaned will be evaluated to NuLL on the next GC cycle and their allocated
memory will be released. Hence, nuLL checks on UObjects are always
mandatory.

Glove objects inside the SenseGlove Unreal Engine Plugin, utilize the UObject system,
and since communication for Nova gloves happens over SenseCom and the
Bluetooth protocol, and also the gloves are running on battery, there's always the
possibility for a glove variable to become nuLL and therefore invalidated when the

glove hardware for any reason is not accessible.

The recommended way to work with a glove instance without any performance
penalty, and in a safe manner in Blueprint is:

1. Cache the glove instance inside a global variable if it passes certain tests so that
you don't have to perform all those checks on every access. This usually could
happen inside the Tick function.

2. The first check inside the Tick function is to check whether the cached glove
instance is valid. If it's valid we continue to the next step, if not, we ask the API
for a new glove instance.

289 /461

The SenseGlove Unreal Engine Handbook

3. If the glove instance is valid, then it's best to perform a connectivity check next.
If the glove is connected we don't have to do anything else in regards to
obtaining a new glove instance and caching it. If however the glove is not
connected, we might ask the APl for a new glove instance.

4. If any of the above steps fail, then we can actually ask the API for a new glove
instance, and if the result is successful we're going to cache the new glove
instance.

5. From here on, anywhere else inside your code, whenever you need to access
the glove data or perform an operation like for example sending or stopping
haptics you always perform a validity check and only proceed when the glove
instance is valid. This way you will always ensure you are accessing the glove
instances in a safe and reliable manner, thus avoiding any unexpected
behaviors or crashes.

The following Blueprint examples implement the above approach and also
demonstrate good and bad glove instance accesses:

M My Blueprint x %2 Event Graph

Ry € x >

Safest way to get the glove, you can make this a function, but since Bluetooth is not a reliable tech we recommend you check the glove validity every frame

FUNCTIONS
MACROS
VARIABLES
Lef

EVENT DISPATCHERS
Good and safe code

Bad and unsafe code

290/ 461

The SenseGlove Unreal Engine Handbook

OpenXR

The SenseGlove Unreal Engine Plugin has provided OpenXR-compatible hand
tracking by implementing XR_EXT_hand_tracking since v2.1.0.

Typically a user does not need to know anything about OpenXR to use the plugin, so
this section of the handbook is for advanced users who are looking for a way to
directly consume the OpenXR data coming directly from either a SenseGlove device
or if enabled in the plugin settings from hand-tracking.

Since the SenseGlove Unreal Engine Plugin registers itself as an oOpenXRHandTracking
motion controller device it becomes a hand-tracking provider for Unreal Engine, thus
the OpenXR data from SenseGlove could always be retrieved from the Unreal
Engine's IXTrackingSystem with one caveat. The caveat is if another OpenXR-
compatible hand-tracking plugin, e.g. Epic's own OpenXRHandTracking, is enabled
simultaneously it's not guaranteed that the FXRMotionControllerData and
FXRHandTrackingState structs retrieved from the

IXTrackingSystem: :GetMotionControllerData() and

IXTrackingSystem: :GetHandTrackingState() methods are coming from SenseGlove,
as these methods return the first hand-tracking plugin they could find. Thus,
SenseGlove provides its own implementation of GetMotionControllerData() and
GetHandTrackingState() which guarantee the retrieved FXRMotionControllerData Or
FXRHandTrackingState are coming from the SenseGlove Unreal Engine Plugin; and
this is the preferred way to that.

Note

In order to retrieve the latest FXRMotionControllerState available, The
SenseGlove Unreal Engine Plugin provides an alternative implementation for
IXTrackingSystem: :GetMotionControllerState() as well.However, since this
method does not rely on the OpenXRHandTracking provider, it may become
redundant. As a result, we might consider removing this functionality in future
updates in favor of the one that Unreal Engine provides.

Important

291/461

The SenseGlove Unreal Engine Handbook

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

In the next sections we'll see:

e How we can directly consume the FXRMotionControllerData on UE 5.2, 5.3,

5.4,and 5.5 to draw and animate debug virtual hands in both Blueprint and
C++.

e How we can directly consume the FXRHandTrackingState on UE 5.5 to draw
and animate debug virtual hands in both Blueprint and C++.

e The Consuming OpenXR Hand-Tracking Data tutorial series provides a
comprehensive introduction to virtual reality, OpenXR hand-tracking, and
gesture detection in Unreal Engine. Additionally, this tutorial series covers
procedural virtual hand mesh animation using the OpenXR hand-tracking data.

292 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState

Important

Unreal Engine versions 5.2, 5.3,and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState Sstructs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand-
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FXRHandTrackingState declaration inside the Unreal
Engine's HeadMountedDisplay module at
Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h,
figuring out the data structure might not seem very straightforward:

293 /461

https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h

The SenseGlove Unreal Engine Handbook

USTRUCT (BlueprintType)
struct FXRHandTrackingState

{
GENERATED_USTRUCT_BODY () ;

// The state 1is valid if poses have ever been provided.

UPROPERTY (BlueprintReadOnly, Category =
bool bVvalid = false;

UPROPERTY (BlueprintReadOnly, Category
FName DeviceName;

UPROPERTY (BlueprintReadOnly, Category
FGuid ApplicationInstancelD;

UPROPERTY (BlueprintReadOnly, Category
EXRSpaceType XRSpaceType = EXRSpaceType:

UPROPERTY (BlueprintReadOnly, Category =
EControllerHand Hand = EControllerHand::

UPROPERTY (BlueprintReadOnly, Category =

IIXRII)
IIXRII)
IIXRII)
IIXRII)
:UnrealWorldSpace;

IIXRII)
Left;

IIXR")

ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).
UPROPERTY (BlueprintReadOnly, Category =
TArray<FVector> HandKeyLocations;

IIXRII)

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).
UPROPERTY (BlueprintReadOnly, Category =
TArray<FQuat> HandKeyRotations;

IIXRII)

// The 1indices of this array are the values of EHandKeypoint (Palm,

Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<float> HandKeyRad1ii;
s

Which on the Blueprint side it looks like this:

294/ 461

The SenseGlove Unreal Engine Handbook

—————————————————t.

Hand Valid

Hand Device Name O»
Hand Application Instance ID
Hand XRSpace Type

Hand Hand

Hand Tracking Status

Hand Hand Key Locations :.:
Hand Hand Key Rotations

Hand Hand Key Radii

But, fear not, we've got you covered!

FXRHandTrackingState in Unreal Engine

FXRHandTrackingState is a structure in Unreal Engine designed to hold detailed
information about the state of a hand-tracking device at a given moment. This
structure is essential for handling hand-tracking inputs in virtual reality (VR)
applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

295/461

The SenseGlove Unreal Engine Handbook

Structure Members of FXRHandTrackingState
e bValid

o Description: A boolean flag indicating whether the data is valid or not.
o Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

DeviceName

o Type: FName

o Description: The name of the device.

o Usage: Identifies which device the data is coming from, useful when
multiple devices are in use.

ApplicationinstancelD

o Type: FString

o Description: A unique identifier for the application instance.

o Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

XRSpaceType

o Type: EXRSpaceType

o Description: Enum specifying the type of XR space being used (e.g., unreal
world or tracking space).
o Usage: Specifies the coordinate system the XR Device is tracking itself in.

Hand

o Type: EControllerHand

o Description: Enum indicating which hand is being tracked (left or right).

o Usage: Helps identify whether the hand-tracking data pertains to the left
or right hand, essential for hand-specific actions or interactions.

TrackingStatus

o Type: EXRTrackingStatus

296 /461

The SenseGlove Unreal Engine Handbook
o Description: Enum indicating the tracking status of the hand-tracking
device.
o Usage: Shows whether the hand-tracking device is being tracked
accurately, with possible statuses like Tracked, NotTracked, etc.

e HandKeyLocations

o Type: TArray<FVector>

o Description: An array of vectors representing key locations of the hand.

o Usage: Provides detailed locations of key points on the hand, useful for
precise hand-tracking and interaction.

e HandKeyRotations

o Type: TArray<FQuat>

o Description: An array of quaternions representing key rotations of the
hand.

o Usage: Complements the hand key locations with rotational data,
ensuring accurate representation of hand movements.

e HandKeyRadii

o Type: TArray<float>
o Description: An array of floats representing the radii of key points of the
hand.

o Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

Organization of FXRHandTrackingState

The structure is organized to encapsulate all relevant data needed for hand-tracking
in a coherent and accessible manner. Boolean flag bvalid provides quick checks on
the state of the controller data. Identifiers DeviceName and ApplicationInstanceID
ensure the correct association of data. Arrays HandKeylLocations, HandKeyRotations,
and HandKeyRadii allow detailed hand-tracking, which is critical for immersive VR
experiences. Lastly, the tracking status TrackingStatus informs the system of the

297 /461

The SenseGlove Unreal Engine Handbook

reliability of the data being processed and whether the hands are actively being
tracked or they are inactive at the moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeylLocations and HandKeyRotations fields of the FXRHandTrackingState struct.

Both HandKeyLocations and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT, etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT aS EHandKeypointCount inside
Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h as
follows:

298 /461

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html
https://github.com/EpicGames/UnrealEngine/blob/release/Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h

The SenseGlove Unreal Engine Handbook

[**
* Transforms that are tracked on the hand.
* Matches the enums from WMR to make it a direct mapping
*/
UENUM (BlueprintType)
enum class EHandKeypoint : uint8
{
Palm,
Wrist,
ThumbMetacarpal,
ThumbProximal,
ThumbDistal,
ThumbT-ip,
IndexMetacarpal,
IndexProximal,
IndexIntermediate,
IndexDistal,
IndexT1ip,
MiddleMetacarpal,
MiddleProximal,
MiddleIntermediate,
MiddleDistal,
MiddleT1ip,
RingMetacarpal,
RingProximal,
RingIntermediate,
RingDistal,
RingT1ip,
LittleMetacarpal,
LittleProximal,
LittleIntermediate,
LittleDistal,
LittleTip

s

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

So, getting the any joint's location or rotation is as easy as casting the enum value
and passing it as the array index.

299 /461

The SenseGlove Unreal Engine Handbook

FXRHandTrackingState HandTrackingState;
const bool bGotHandTrackingState = FSGXRTracker::GetHandTrackingState(
GetWorld(), EXRSpaceType::UnrealWorldSpace, EControllerHand::Left,
HandTrackingState);

// Return 1if the struct data is -dinvalid!

if (!bGotHandTrackingState || !HandTrackingState.bValid)
{

return;
}

// Return if the device is not being tracked!
if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that HandTrackingState.HandKeylLocations has the location data
// for 26 joints!
if (!ensureAlwaysMsgf(HandTrackingState.HandKeylLocations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyLocations count!'")))

return;

// Ensure that HandTrackingState.HandKeyRotations has the rotation data
// for 26 joints!
if (!ensureAlwaysMsgf (HandTrackingState.HandKeyRotations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyRotations count!")))

return;

}

static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint: :Palm) ;

const FVector& PalmLocation{
HandTrackingState.HandKeyLocations[PalmIndex]

}s

const FRotator& PalmRotation{
HandTrackingState.HandKeyRotations[PalmIndex].Rotator ()

b5

300 /461

The SenseGlove Unreal Engine Handbook

The equivalent Blueprint code for the above looks something like this:

 Get Hand Tracking State T Branch £ Switch on ETracki

ANL

‘Addpin @

LENGTH

" Addpin ®

LENGTH

Hand Key Rotatior

Hand Key Radii i

B Literal enum EHandKeypoint

Enum Return Value

Paim v

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++in the upcoming sections.

301/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/cpp.html

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState in
Blueprint

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRHandTrackingState section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

302 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

The SenseGlove Unreal Engine Handbook
, File Edit Window Tools Help
(A1)
VRTemplateMap ¥ Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support

Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4.You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the
code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand.

303/461

The SenseGlove Unreal Engine Handbook

File Edit View Debug Window Tc Help
VRPawn* x

No debug obj v

mpile | a t =g Diff v @Fmd *% Hide Unrelated

F Draw Hand x # Details
(e}

Off Pins to Create/Connect New Nodes.

Default

Compact Node Title
P
Call In Edite

cifier

EContoller Ha v
[Draw Hand . et
> by-Reference

M \y Blueprint
Outputs

+Add Q
Please press the +icon p——

GRAPHS

F ToggleMenu
F DrawHand
MACROS

5 Content Drawer [Outputlog EJCmd v & 1 Unsaved ¥ Re

6. Inside this function's event graph add a Get Hand Tracking State node from

SenseGlove > Tracking > XR Tracker > Get Hand Tracking State.

304 /461

The SenseGlove Unreal Engine Handbook

[DrawHand All Actions for this Blueprint Context Sensitive

D] X get hand tracking state]

Input
XRTracking

WillGet Hand Tracking State

Sense Glove
Components
Virtual Hand Component

BallGet Hand Tracking State

Wrist Tracker Component

BalG et Hand Tracking State

Tracking
XR Tracker

57 Get Hand Tracking State

Hand

Get Hand Tracking State

Target is SGXRTracker Kismet Library

7. Then connect the functions Hand input parameter to the Get Hand Tracking
State's Hand input and right-click on the outHandTrackingState parameter and
use the Break XRHandTrackingState node to break the struct to it's fields.

305/461

The SenseGlove Unreal Engine Handbook

f Get Hand Tracking State

» b
XRSpace Type Out Hand Tracking State

Unreal World Space
Return Value

Hand

. Break XRHand Tracking State

XRHand Tracking State Valid
Device Name O»

Application Instance ID

XRSpace Type

Hand

Tracking Status
Hand Key Locations i3

Hand Key Rotations

Hand Key Radii

8. After this, we need to perform data validation by checking the return status of
the Get Hand Tracking State function and FXRHandTrackingState's Valid field.

Then, we check if the hand-tracking device is being tracked and indeed coming
from a hand-tracking source. And, finally, we check whether we have the
positions and rotations for exactly 26 joints or not.

If we got the hand tracking state and it's valid If the device is being tracked

Fon ETrackingStatss
Not Tracked [
Inertial Only B

Tracked B

Ensure that we have the data for exactly 26 joints

/ - = ¥

LENGTH e

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FXxRHandTrackingState to the

306 /461

The SenseGlove Unreal Engine Handbook

DebugVirtualHand: :Draw function! But, since the point of this tutorial is to learn
how to consume the FxRHandTrackingState we ignore the last option. Between
the debug cubes or gizmos, we are going to choose the gizmos since they
better represent the rotations than the cubes.

All Actions for this Blueprint Context Sensitive
Q

Sense Glove
Backend
Components
Connect
Core
Debug

Cube
Gizmo
Virtual Hand

f Draw
f Draw

Game Framework Draw FXRHand Tracking State

Settings Target is SGDebug Virtual Hand Kismet Library
Tracking

Sequence Evaluator
Sequencer

Services

Settings

10. In the last step inside the praw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions Or Hand Key Rotations arrays from the FXRHandTrackingState struct.

307 /461

The SenseGlove Unreal Engine Handbook

Since we made sure both arrays have 26 elements before we reached this
step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop Or @ For Loop tO access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the praw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two praw functions
and the only difference between the two is that one accepts an FqQuat and the
other a FRotator forits Rotation input parameter. In this case, we use the
FQuat variant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2, as the default
value might be too thick for drawing a joint gizmo.

If we got the hand tracking state and it's valid If the device is being tracked

Ensure that we have the data for exactly 26 joints

LENGTH e
(LENGTH e

=

11. Well, now the full implementation for the braw Hand function insde the vRPawn
should look something like this:

308 /461

The SenseGlove Unreal Engine Handbook

F DrawHand

If we got the hand tracking state and it's valid If the device is being tracked

Eoawrnd Gl Trackng St [— e TS SR TS
= » > » e —— » Mot Trsckea >

s Kepsce Type Out ona Trsckin State Constion Condition False > Seection

Hand

AR g S
ks kee Ensure that we have the data for exactly 26 joints

LENGTH e

oo 05

AN
Addpin ©

Draw a debug giZfo per each joint

Ty o™ ™ npn g S SN M

Compitea >

12. Finally, go back to vrRpPawn's event graph and the following code to the Tick
event. Basically what we do here is call our newly implemented Draw Hand
twice, once for each hand.

7 File Edit Asset V Debug Window Tools Help
(L)
VRTemplateMap VRPawn+ x

B W igcomwie ! =gDiffv fDFind *BHideUnrelated : {f Class Settings & Class Defaults B Simulation | 3 H No debug object selected v
omponents x Vie
[H Comy = Vi

+ Add Q

F Construction Scr f Teleport Trace 23 EventGraph X F Draw Hand
N~ | & by >
£ VRPawn (Self)
ke, VROrigin
b, MotionControllerLeftGrip Attempt to draw the left and right virtual hands every frame
% XRDeviceVisualizationLeft
2, HandLeft AN
Be Camera LA

& Draw Hand & Draw Hand

% HeadMountedDisplayMesh » —
ke, MotionControllerRightAim Delta Seconds
A+, WidgetinteractionRight
&, MotionControllerL
A, WidgetinteractionLeft
ki, TeleportTraceNiagarasyst
A, MotionContrallerRightGrip
2, HandRight
&2 XRDeviceVisualizationRight
VRNotifications 4 : X
H The vr.PixelDensity cvar will
S for your Head Mounted Displ
My Blueprint
+add Q

. . . More info: https://www.unred
:-R-A:Hs - Begin Play - Set Tracking Origin to floor changes-coming-to-vr-resol
*: EventGraph

FUNCTIONS

& Event BeginPlay T EBranch f Set Tracking Origin
7 ConstructionScript L

2 —_— Tue B —
F StartTeleportTrace » » » »

F TeleportTrace Condiion False [Origin
5 S Stage
F 1svalidTeleportLocation F T+ Fiead Mounted Display Enabled
F EndTeleportTrace
Return Value
F TryTeleport
F GetGrabComponentNearMotionController
F SnapTurn
F ToggleMenu
F DrawHand

The SenseGlove Unreal Engine Handbook

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands
inside your VR simulation.

310/461

The SenseGlove Unreal Engine Handbook

Consuming FXRHandTrackingState in
C++

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRHandTrackingState section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

311 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrhandtrackingstate//getting-started/installation.html

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(AL)

VRTemplateMap % Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support
Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. From the Tools menu choose New C++ class....

File Edit w Tools Build

L VRTemplateMap Q, t14 Editor Prefer

” ",,_-‘J Platforms
& New C++Class

) Find in Blueprints
=, C++ Header Preview

Cache Statistics

= CSVtosSVG
Localization Dashboard
A Merge Actors

Spectator

. Project Launcher

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

312 /461

The SenseGlove Unreal Engine Handbook

Add C++ Class

NAME YOUR NEW PAWN

Enter a name for your new class. Class names may only contain alphanumeric characters, and may not contain a space.
When you click the "Create” button below, a header (.h) file and a source (.cpp) file will be made using this name.

Class Type Public Private

Name DebugPawn VirtualHandCpp (Runtime) v
Path C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/ i
Header File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h

Source File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp

Create Class Cancel

6. Name the new pawn class DebugPawn .

Add C++ Class

CHOOSE PARENT CLASS

Common Classes All Classes

This will add a C++ header and source code file to your game project.

C++ class with a default constructor and destructor.

Character
A character is a type of Pawn that includes the ability to walk around.

Pawn
A Pawn is an actor that can be 'possessed’ and receive input from a controller.

Actor
An Actor is an object that can be placed or spawned in the world.

Selected Class pawn (@
Selected Class Source Pawn.h
Cancel

313/461

The SenseGlove Unreal Engine Handbook

7.Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from
the File menu choose the Reparent Blueprint class.

File | Edit =t View Debug Window Tools Help

Ll b

" Hide Unrelated
. Open Asset... CTRL+P | =

% Recent Blueprint Assets > Viewport

Save All CTRL+SHIFT+S
Choose Files to Save .. CTRL+ALT+SHIFT+5
Save CTRL+S

, Save As_. CTRL+ALT+5

Compile

Refresh All nodes

Reparent Blueprint

Merge

Developer 3

VP IUYETIET civ LT iy

Tl Change the parent of this Blueprint

9.In the new Reparent blueprint window choose DebugPawn as the new parent.

314 /461

The SenseGlove Unreal Engine Handbook

Reparent blueprint
> DebugPa
f WDebugPalll

Debug Pawn

1 item

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the AbebugPawn class has been set as the new
parent.

315/461

The SenseGlove Unreal Engine Handbook

Default

Projected Tel.

Valid Telepor.

Teleport Trac
EEELTTER W0

Snap Turn De. -45,0

Teleport Trac. 0 Array elerr @ ﬁ

Tele port Pr :::j_ 0,0 0,0 0,0

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice, OpenXRHMD, SenseGloveBuildHacks, SenseGloveDebug,
SenseGloveSettings, and SenseGloveTracking modules as either a private or
public dependency.

316 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules

{
public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)

{
PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

PublicDependencyModuleNames.AddRange (new string[] { "Core",
"CoreUObject", "Engine'", "InputCore" });

PrivateDependencyModuleNames.AddRange (new string[]

{
"InputDevice",
"OpenXRHMD",
"SenseGloveBuildHacks",
"SenseGloveDebug",
"SenseGloveSettings",
"SenseGloveTracking"

s

// Uncomment if you are using Slate UI
// PrivateDependencyModuleNames.AddRange (new string[] { "Slate",
"SlateCore" 1});

// Uncomment if you are using online features
// PrivateDependencyModuleNames.Add("OnlineSubsystem");

// To 1include OnlineSubsystemSteam, add it to the plugins section 1in
your uproject file with the Enabled attribute set to true
}
}

12. Locate the C++ header and source file for the AbebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

317 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"
#include "DebugPawn.generated.h"

UCLASS ()
class VIRTUALHANDCPP_API ADebugPawn : public APawn

{
GENERATED_BODY ()

private:
// The virtual hand drawing settings.
UPROPERTY (EditDefaultsOnly, Category='"DebugPawn",
meta=(AllowPrivateAccess="false"))
FSGDebugGizmoSettings HandDrawingSettings;

public:
// Sets default values for this pawn's properties
ADebugPawn () ;

protected:
// Called when the game starts or when spawned
virtual void BeginPlay() override;

public:
// Called every frame
virtual void Tick(float DeltaTime) override;

// Called to bind functionality to -input
virtual void SetupPlayerInputComponent(class UInputComponentx
PlayerInputComponent) override;

private:
// The method responsible for drawing a virtual hand.
void DrawHand (EControllerHand Hand) const;
+s
14. Modify the DebugPawn.cpp implementation file to look like this:

318 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#include '"DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn: : ADebugPawn ()
{
// Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
PrimaryActorTick.bCanEverTick = true;

// Set the default virtual hand drawing settings.
HandDrawingSettings = FSGDebugGizmoSettings{
1.0f,
FColor{255, 0, 0, 255},
FColor{®, 255, 0, 255},
FColor{®, ®, 255, 255},
false,
1.1f,
0,
0.2f,
b5

// Called when the game starts or when spawned
void ADebugPawn: :BeginPlay ()
{
Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)

{
Super::Tick(DeltaTime);
// Attempt at drawing the left/right virtual hands every frame.
DrawHand (EControllerHand::Left);
DrawHand (EControllerHand: :Right) ;
}

// Called to bind functionality to input
void ADebugPawn: :SetupPlayerInputComponent (UInputComponentx*

319/461

The SenseGlove Unreal Engine Handbook

PlayerInputComponent)

{
}

Super: :SetupPlayerInputComponent (PlayerInputComponent) ;

void ADebugPawn: :DrawHand(const EControllerHand Hand) const

{

// Get the world and cache it, if it's null we return early.
UWorld* World{GetWorld()};

if (!IsvValid(World))

{

return;

FXRHandTrackingState HandTrackingState;
const bool bGotHandTrackingState = FSGXRTracker: :GetHandTrackingState(
World, EXRSpaceType::UnrealWorldSpace, Hand, HandTrackingState);

// Return if the struct data is -dinvalid!

if (!bGotHandTrackingState || !HandTrackingState.bValid)
{

return;
}

// Return if the device is not being tracked!
if (HandTrackingState.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that HandTrackingState.HandKeylLocations has the location data
// for 26 joints!
if (!ensureAlwaysMsgf(HandTrackingState.HandKeylLocations.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyLocations count!'")))

return;
// Ensure that HandTrackingState.HandKeyRotations has the rotation data
// for 26 joints!
if (!ensureAlwaysMsgf (HandTrackingState.HandKeyRotations.Num()
== EHandKeypointCount,

TEXT ("Invalid HandKeyRotations count!")))

return;

320/461

The SenseGlove Unreal Engine Handbook

// Iterate over the hand joint locations and rotations!
for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)
{
const FVector& JointLocation{
HandTrackingState.HandKeyLocations[JointIndex]
}s
const FQuat& JointRotation{
HandTrackingState.HandKeyRotations[JointIndex]

s

// Draw a single joint's gizmo!
// Please note that we could alternatively:
// Use FSGDebugCube::Draw() to draw a cube.
// Or use the FSGDebugVirtualHand: :Draw() method and pass the
// HandTrackingState directly to draw the virtual hand
// all at once without iterating the joints. But, that's not
// goal of this tutorial.
FSGDebugGizmo: :Draw(World, JointLocation, JointRotation,
HandDrawingSettings);
}
}

15. Now, rebuild the source code and go back to the VRTemplateMap, then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

321/461

The SenseGlove Unreal Engine Handbook

322 /461

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Ssince at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, it is recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState Sstructs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Taking a closer look at the FxRMotionControllerData declaration inside the Unreal
Engine's HeadMountedDisplay module at
Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h,
figuring out the data structure might not seem very straightforward:

323 /461

https://github.com/EpicGames/UnrealEngine/blob/5.5/Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h

The SenseGlove Unreal Engine Handbook

USTRUCT (BlueprintType)
struct FXRMotionControllerData

{
GENERATED_USTRUCT_BODY () ;

UPROPERTY (BlueprintReadOnly, Category = "XR")

bool bVvalid = false;

UPROPERTY (BlueprintReadOnly, Category = "XR")

FName DeviceName;

UPROPERTY (BlueprintReadOnly, Category = "XR")

FGuid ApplicationInstancelD;

UPROPERTY (BlueprintReadOnly, Category = "XR")

EXRVisualType DeviceVisualType = EXRVisualType::Controller;

UPROPERTY (BlueprintReadOnly, Category = "XR")
EControllerHand HandIndex = EControllerHand::Left;

UPROPERTY (BlueprintReadOnly, Category = "XR")
ETrackingStatus TrackingStatus = ETrackingStatus::NotTracked;

// Vector representing an object being held in the player's hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector GripPosition = FVector(0.0f);

// Quaternion representing an object being held in the player's hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat GripRotation = FQuat(EForceInit::ForcelInitToZero);

// For handheld controllers, gives a vector for pointing at objects
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector AimPosition = FVector(0.0f);

// For handheld controllers, gives a quaternion for pointing at objects
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat AimRotation = FQuat(EForceInit::ForceInitToZero);

// For handheld controllers, gives a vector for representing the hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FVector PalmPosition = FVector(0.0f);

// For handheld controllers, gives a quaternion for representing the hand
UPROPERTY (BlueprintReadOnly, Category = "XR")

FQuat PalmRotation = FQuat(EForceInit::ForcelInitToZero);

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<FVector> HandKeyPositions;

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

324 /461

The SenseGlove Unreal Engine Handbook

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<FQuat> HandKeyRotations;

// The 1indices of this array are the values of EHandKeypoint (Palm,
Wrist, ThumbMetacarpal, etc).

UPROPERTY (BlueprintReadOnly, Category = "XR")

TArray<float> HandKeyRadii;

UPROPERTY (BlueprintReadOnly, Category = "XR")
bool bIsGrasped = false;

s

Which on the Blueprint side it looks like this:

_—

Motion Controller Data Valid
Motion Controller Data Device Name O
Motion Cantroller Data Application Instance ID
Motion Controller Data Device Visual Type
Motion Controller Data Hand Index
Motion Controller Data Tracking Status
Motion Controller Data Grip Position O
Motion Controller Data Grip Rotation
Motion Controller Data Aim Position O
Motion Controller Data Aim Rotation
Motion Controller Data Palm Position O
Motion Controller Data Palm Rotation

Maotion Controller Data Hand Key Positions 222

Motion Controller Data Hand Key Rotations

Motion Controller Data Hand Key Radii

Motion Controller Data Is Grasped

But, fear not, we've got you covered!

325/461

The SenseGlove Unreal Engine Handbook

FXRMotionControllerData in Unreal Engine

FXRMotionControllerData iS a structure in Unreal Engine designed to hold detailed
information about the state of a motion controller device at a given moment. This
structure is essential for handling motion controller inputs in virtual reality (VR)

applications, providing the necessary data to accurately track and represent the
user's hand movements and actions within the virtual environment.

Structure Members of FXRMotionControllerData

e bVvalid

o Description: A boolean flag indicating whether the data is valid or not.
o Usage: This is used to check if the motion controller data is correctly
initialized and can be used for further processing.

e DeviceName

o Type: FName
o Description: The name of the device.

o Usage: Identifies which motion controller device the data is coming from,
useful when multiple devices are in use.

e ApplicationinstancelD

o Type: FString

o Description: A unique identifier for the application instance.

o Usage: Helps in differentiating data from different instances of an
application, ensuring the correct instance processes the data.

e DeviceVisualType

o Type: EXRVisualType

o Description: Enum specifying the visual type of the device (e.g., controller,
hand).

o Usage: Used to differentiate between various motion controller devices or
hand-tracking representations for rendering and interaction purposes.

326 /461

The SenseGlove Unreal Engine Handbook

Handindex

o Type: EControllerHand

o Description: Enum indicating which hand is being tracked (left or right).

o Usage: Helps identify whether the motion data pertains to the left or right
hand, essential for hand-specific actions or interactions.

TrackingStatus

o Type: EXRTrackingStatus

o Description: Enum indicating the tracking status of the motion controller.

o Usage: Shows whether the controller is being tracked accurately, with
possible statuses like Tracked, NotTracked, etc.

GripPosition

o Type: Fvector

o Description: The position of the grip in world coordinates.

o Usage: Provides the 3D coordinates of the controller's grip, essential for
positioning the virtual representation of the controller.

GripRotation

o Type: FQuat

o Description: The rotation of the grip in world coordinates.

o Usage: Provides the orientation of the controller's grip, allowing for
accurate rotation and alignment in the virtual space.

AimPosition

o Type: Fvector

o Description: The position of the aim point in world coordinates.

o Usage: Specifies where the controller is aiming, useful for aiming or
pointing actions.

AimRotation
o Type: FQuat

o Description: The rotation of the aim point in world coordinates.

327 /461

The SenseGlove Unreal Engine Handbook

o Usage: Determines the orientation of the aim direction, important for
actions like shooting or selecting objects in VR.

PalmPosition

o Type: FVector

o Description: The position of the palm in world coordinates.
o Usage: Provides the 3D location of the palm, important for determining
hand gestures or interactions in VR.

PalmRotation

o Type: FQuat

o Description: The rotation of the palm in world coordinates.

o Usage: Defines the orientation of the palm, crucial for hand-based
interaction accuracy and realism in VR experiences.

HandKeyPositions

o Type: TArray<FVector>
o Description: An array of vectors representing key positions of the hand.

o Usage: Provides detailed positions of key points on the hand, useful for
precise hand tracking and interaction.

HandKeyRotations

o Type: TArray<FQuat>

o Description: An array of quaternions representing key rotations of the
hand.

o Usage: Complements the hand key positions with rotational data,
ensuring accurate representation of hand movements.

o HandKeyRadii

o Type: TArray<float>

o Description: An array of floats representing the radii of key points of the
hand.

o Usage: Gives the size of the hand key points, aiding in collision detection
and interaction fidelity.

328 /461

The SenseGlove Unreal Engine Handbook

e bisGrasped

o Type: bool

o Description: A boolean indicating whether the controller is currently
grasping an object.

o Usage: Determines if the user is holding something, affecting interactions
and animations.

Organization of FXRMotionControllerData

The structure is organized to encapsulate all relevant data needed for hand and
motion controller tracking in a coherent and accessible manner. Boolean flags
bvalid and bIsGrasped provide quick checks on the state of the controller data.
Identifiers DeviceName and ApplicationInstanceID ensure the correct association of
data. Positional and rotational data GripPosition, GripRotation, AimPosition, and
AimRotation offer precise tracking of the controller's movement. Arrays
HandKeyPositions, HandKeyRotations, and HandKeyRadii allow detailed hand
tracking, which is critical for immersive VR experiences. Lastly, the tracking status
TrackingStatus informs the system of the reliability of the data being processed and
whether the motion controller is actively being tracked or it's inactive at the
moment.

Processing the Data for Drawing and Animating a Virtual Hand

In order to draw and animate a virtual hand in real-time whether the data is coming
from hand-tracking or a SenseGlove device, we could consume the data from the
HandKeyPositions and HandKeyRotations fields of the FXRMotionControllerData
struct.

Both HandKeyPositions and HandKeyRotations contain 26 elements as defined by
OpenXR's XR_HAND_JOINT_COUNT_EXT and XrHandJointLocationsEXT, etc.

Unreal Engine also provides an enum called EHandKeypoint naming the 26 joints, and
the equivalent of XR_HAND_JOINT_COUNT_EXT as EHandKeypointCount inside

329/461

https://registry.khronos.org/OpenXR/specs/1.1/man/html/XR_HAND_JOINT_COUNT_EXT.html
https://registry.khronos.org/OpenXR/specs/1.0/man/html/XrHandJointLocationsEXT.html

The SenseGlove Unreal Engine Handbook

Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h as
follows:

[/ **
* Transforms that are tracked on the hand.
* Matches the enums from WMR to make it a direct mapping
*/
UENUM (BlueprintType)
enum class EHandKeypoint : uint8
{
Palm,
Wrist,
ThumbMetacarpal,
ThumbProximal,
ThumbDistal,
ThumbT-ip,
IndexMetacarpal,
IndexProximal,
IndexIntermediate,
IndexDistal,
IndexT1ip,
MiddleMetacarpal,
MiddleProximal,
MiddleIntermediate,
MiddleDistal,
MiddleTip,
RingMetacarpal,
RingProximal,
RingIntermediate,
RingDistal,
RingT1ip,
LittleMetacarpal,
LittleProximal,
LittleIntermediate,
LittleDistal,
LittleTip

}s

const int32 EHandKeypointCount = static_cast<int32>(EHandKeypoint::LittleTip)
+ 1;

So, getting the any joint's position or rotation is as easy as casting the enum value
and passing it as the array index.

330/461

https://github.com/EpicGames/UnrealEngine/blob/5.5/Engine/Source/Runtime/HeadMountedDisplay/Public/HeadMountedDisplayTypes.h

The SenseGlove Unreal Engine Handbook

FXRMotionControllerData MotionControllerData;
const bool bGotMotionControllerData =
FSGXRTracker: :GetMotionControllerData(
GetWorld(), EControllerHand::Left, MotionControllerData);

// Return 1if the struct data is -dinvalid!

if (!bGotMotionControllerData || !MotionControllerData.bValid)
{

return;
}

// Return if the device is not being tracked!
if (MotionControllerData.TrackingStatus == ETrackingStatus::NotTracked)

return;

// Ensure that MotionControllerData.DeviceVisualType is a hand!
if (!ensureAlwaysMsgf(MotionControllerData.DeviceVisualType

== EXRVisualType: :Hand,

TEXT("Invalid DeviceVisualType type!")))

// Ensure that MotionControllerData.HandKeyPositions has the position
data
// for 26 joints!
if (!ensureAlwaysMsgf(MotionControllerData.HandKeyPositions.Num()
== EHandKeypointCount,
TEXT ("Invalid HandKeyPositions count!")))

return;

// Ensure that MotionControllerData.HandKeyRotations has the rotation
data
// for 26 joints!
if (!ensureAlwaysMsgf (MotionControllerData.HandKeyRotations.Num()
== EHandKeypointCount,
TEXT ("Invalid HandKeyRotations count!")))

return;

}

static constexpr int32 PalmIndex = static_cast<int32>
(EHandKeypoint: :Palm);

331/461

The SenseGlove Unreal Engine Handbook

const FVector& PalmPosition{
MotionControllerData.HandKeyPositions[PalmIndex]

b3

const FRotator& PalmRotation{
MotionControllerData.HandKeyRotations[PalmIndex].Rotator ()

}s

The equivalent Blueprint code for the above looks something like this:

£’ Switch on EXRVisualType

LENGTH

OK, now that we've got a glimpse of how the virtual hand's joint data could be
processed we are going to draw and animate a virtual hand in both Blueprint and
C++in the upcoming sections.

332 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/blueprint.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/cpp.html

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData in
Blueprint

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've studied the Consuming
FXRMotionControllerData section, first.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

333/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

The SenseGlove Unreal Engine Handbook
, File Edit Window Tools Help
(A1)
VRTemplateMap ¥ Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support

Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4.You could add the required Blueprint code for drawing virtual hands to either
your Level Buleprint or the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn . In this guide we are going to add the
code to our VRPawn.

5. Add a new function named Draw Hand with an input parameter of type
EController Hand named Hand .

334 /461

The SenseGlove Unreal Engine Handbook
File Edit t View Debug Window To
VRPawn+

mpile ¢ L. Ta t =g Diff v SDFind *g Hide Unrelated No debug obj v

F Draw Hand x # Details

Q

Graph Node

Drag Off Pins to Create/Connect New Nodes.

Default

M My Blueprint

+Add Q

by-Reference

Please pressthe +
GRAPHS

EndTeleportTrace
Teleport

apTurn
F ToggleMenu
F DrawHand

MACROS

5 Content Drawer [Outputlog EJCmd v

6. Inside this function's event graph add a Get Motion Controller Data node from

SenseGlove > Tracking > XR Tracker > Get Motion Controller Data.

335/461

The SenseGlove Unreal Engine Handbook

[Draw Hand All Actions for this Blueprint Context Sensitive

D X get motion controller data|

J Get Custom Primitive Data Index for Scalar Parameter (
F Get Custom Primitive Data Index for Scalar Parameter (
JF Get Custom Primitive Data Index for Vector Parameter (
JF Get Custom Primitive Data Index for Vector Parameter (
JF Get Custom Primitive Data Index for Vector Parameter |

F Get Custom Primitive Data Index for Vector Parameter (
Sense Glove
Components
Virtual Hand Component

FillGet Motion Controller Data)

Wrist Tracker Component

FillGet Motion Controller Data)

Tracking
XR Tracker

WillGet Motion Controller Datal

Get Motion Controller Data

Target is SGXRTracker Kismet Library

7. Then connect the functions Hand input parameter to the Get Motion
Controller Data's Hand input and right-click on the OutMotionControllerData
parameter and use the Break XRMotionControllerData node to break the struct
to it's fields.

336 /461

The SenseGlove Unreal Engine Handbook

[Draw Hand F Get Motion Controller Data

| 2
Hand Hand Out Motion Controller Data

Return Value

= Break XRMotionControllerData
XRMotion Controller Data Valid
Device Name Or
Application Instance ID
Device Visual Type
Hand Index
Tracking Status
Grip Position O»
Grip Rotation
Aim Paosition O
Aim Rotation
Palm Position O»

Palm Rotation

Hand Key Rotations
Hand Key Radii

Is Grasped

8. After this, we need to perform data validation by checking the return status of
the Get Motion Controller Data function and FXRMotionControllerData's
valid field. Then, we check if the motion controller device is being tracked and
indeed coming from a hand-tracking source. And, finally, we check whether we
have the positions and rotations for exactly 26 joints or not.

337 /461

The SenseGlove Unreal Engine Handbook

If we got the motion controller data and it's valid If the device is being tracked and it's a hand

Ensure that we have the data for exactly 26 joints

LENGTH o

9. OK, now it's time to draw the joints! If we check out the SenseGlove Debug
module's draw option, we notice there are various ways to draw the debug
virtual hand. Drawing a cube or a gizmo per joint, or draw the whole hand all at
once by passing the retrieved FXRMotionControllerData to the
DebugVirtualHand: :Draw function! But, since the point of this tutorial is to learn
how to consume the FXRMotionControllerData We ignore the last option.
Between the debug cubes or gizmos, we are going to choose the gizmos since
they better represent the rotations than the cubes.

338/461

The SenseGlove Unreal Engine Handbook

All Actions for this Blueprint Context Sensitive

I:_:]__
Rig VM
Save Game
Sense Glove
Backend
Components
Connect
Core
Debug
Cube
T Draw
T Draw
Gizmo
F Draw
F Draw
Virtual Hand
T Draw

Game Framework Draw
oot B

Target is SGDebug Virtual Hand Kismet Library

10. In the last step inside the braw Hand function, in order to draw a virtual hand
with 26 joints, we have to first iterate through either of the Hand Key
Positions Or Hand Key Rotations arrays from the FXRMotionControllerData
struct. Since we made sure both arrays have 26 elements before we reached
this step, it's safe to just iterate over one and use the Array Index inside a For
Each Loop Or @ For Loop tO access the position and rotation of every joint.
Then we use each array Get (a ref) method to access the position and
rotation data inside the loop and call the praw function from SenseGlove >
Debug > Gizmo per every joint. Please note that there are two Draw functions
and the only difference between the two is that one accepts an FQuat and the
other a FRotator forits Rotation input parameter. In this case, we use the
FQuat variant to avoid an extra conversion to FRotator . Also, please adjust the
Thickness option for the Settings parameter from 1.0 to 0.2, as the default
value might be too thick for drawing a joint gizmo.

339/461

The SenseGlove Unreal Engine Handbook

F Draw Hand

Ensure that we have the data for exactly 26 joints

Appliction stance D e
Device Visual Type # LENGTH o
Hand ndex

Tracking Status

LENGTH e

Giip Position O

Hand Key Positions
Hand Key.
Hand Key Radii £3

s Grasped

Aray Index @

Completed >

11. Well, now the full implementation for the
should look something like this:

If we got the motion controller data and it's valid If the device is being tracked and it's a hand

fe 4 T

» NotTracked > B »
selston et oy B sectin
Tracked B 22

Ensure that we have the data for exactly 26 joints

LENGTH e

LENGTH e —-@

Draw a debug gizfmo per each joint
Zanil
I hC
e oy e SIS BRI

. Finally, go back to VRPawn's event graph and the following code to the Tick

event. Basically what we do here is call our newly implemented Draw Hand
twice, once for each hand.

340/ 461

B My Blueprint
Add Q

GRAPHS

2 EventGraph

FUNCTIONS

F DrawHanc

entNearMotianController

The SenseGlove Unreal Engine Handbook

VRPawns

OFind " HideUnrelated i {(} Class Setiings ¢ Class Defaults B Simulation
= Viewport f Teleport Trace % EventGraph x F Draw Hand

v

Attempt to draw the left and right virtual hands every frame

& Draw Hand

& Draw Hand
€ Event Tick

=0 »
Delta Seconds Target [self Target [self
Hand
=

Hand

Begin Play - Set Tracking Origin to floor

€ Event BeginPlay T Branch 7 Set Tracking Origin

P — » Tuep — B
Condiion False [> Origin
7 Iz Head Mounted Display Enabled

Retumn Value

The vr.PixelDensity cvar will
for your Head Mounted Displ

More info: https://www.unred
changes-coming-to-vr-resol

f Execute CJ

Command

13. Now, go back to the VRTemplateMap and use the VR Preview button to run the
game. If everything's done correctly, you should be able to see the virtual hands

inside your VR simulation.

341/461

The SenseGlove Unreal Engine Handbook

Consuming FXRMotionControllerData in
C++

Important

Unreal Engine versions 5.2, 5.3, and 5.4 are limited to
FXRMotionControllerData Since at the time of their release no
FXRHandTrackingState was available. Also please keep in mind that, while
FXRMotionControllerData is pretty much usable and functional in Unreal Engine
5.5, itis recommended to utilize FXRHandTrackingState instead. This is because
this version of UE has deprecated FxRMotionControllerData in favor of the
FXRMotionControllerState and FXRHandTrackingState structs. Prior to version
5.5, FXRMotionControllerData handled both motion controller and hand
tracking data. From 5.5 onward, these responsibilities have been separated
into the two distinct structs, providing clearer and more specialized handling of
each.

Before continuing this section, please ensure you've first studied the Consuming
FXRMotionControllerData section.

Drawing and Animating Virtual Hands

1. Create a new Virtual Reality project based the Unreal VR Template.

2. Make sure the SenseGlove UnrealEngine plugin is installed and enabled inside
your new project.

342 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata/
https://dev.epicgames.com/documentation/en-us/unreal-engine/vr-template-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/consuming-fxrmotioncontrollerdata//getting-started/installation.html

The SenseGlove Unreal Engine Handbook

File Edit Window Tools Help

(AL)

VRTemplateMap % Plugins
<+ Add X SenseGlove

All Plugins
& ALL PLUGINS

PROJECT 2 Integrating the = haptic controller into Unreal Engine

Editor # Edit & Package 4 Documentation @ Support
Virtual Reality

3. You could use either hand-tracking or a SenseGlove device as the input data, or
both of the inside the same project. Whether you would like to use hand-
tracking or a SenseGlove device, please make sure the required steps are taken
for each of those first.

4. From the Tools menu choose New C++ class....

File Edit w Tools Build

L VRTemplateMap Q, t14 Editor Prefer

” ",,_-‘J Platforms
& New C++Class

) Find in Blueprints
=, C++ Header Preview

Cache Statistics

= CSVtosSVG
Localization Dashboard
A Merge Actors

Spectator

. Project Launcher

5. Choose the Unreal Engine's APawn class as the parent class for the new C++
pawn class.

343 /461

The SenseGlove Unreal Engine Handbook

Add C++ Class

NAME YOUR NEW PAWN

Enter a name for your new class. Class names may only contain alphanumeric characters, and may not contain a space.
When you click the "Create” button below, a header (.h) file and a source (.cpp) file will be made using this name.

Class Type Public Private

Name DebugPawn VirtualHandCpp (Runtime) v
Path C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/ i
Header File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h

Source File C:/Users/mamadou/Desktop/dev/VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp

Create Class Cancel

6. Name the new pawn class DebugPawn .

Add C++ Class

CHOOSE PARENT CLASS

Common Classes All Classes

This will add a C++ header and source code file to your game project.

C++ class with a default constructor and destructor.

Character
A character is a type of Pawn that includes the ability to walk around.

Pawn
A Pawn is an actor that can be 'possessed’ and receive input from a controller.

Actor
An Actor is an object that can be placed or spawned in the world.

Selected Class pawn (@
Selected Class Source Pawn.h
Cancel

344 /461

The SenseGlove Unreal Engine Handbook

7.Since we have created a new C++ class, this converts the current Blueprint
VRTemplateMap project to a C++ one. That's why the Unreal Editor will give us a
few prompts regarding opening the project in the default IDE and rebuilding
the code. It might be simpler to just close the editor, then rebuild the source
code inside your favorite IDE, and then start the editor with the converted
project again.

8. Find and open the VRPawn Blueprint Class located at
/Content/VRTemplate/Blueprints/VRPawn inside the Blueprint Editor and from
the File menu choose the Reparent Blueprint class.

File | Edit =t View Debug Window Tools Help

Ll b

" Hide Unrelated
. Open Asset... CTRL+P | =

% Recent Blueprint Assets > Viewport

Save All CTRL+SHIFT+S
Choose Files to Save .. CTRL+ALT+SHIFT+5
Save CTRL+S

, Save As_. CTRL+ALT+5

Compile

Refresh All nodes

Reparent Blueprint

Merge

Developer 3

VP IUYETIET civ LT iy

Tl Change the parent of this Blueprint

9.In the new Reparent blueprint window choose DebugPawn as the new parent.

345/ 461

The SenseGlove Unreal Engine Handbook

Reparent blueprint
> DebugPa
f WDebugPalll

Debug Pawn

1 item

10. By looking at the Parent Class label located under the Blueprint Editor window
control buttons verify that the AbebugPawn class has been set as the new
parent.

346 /461

The SenseGlove Unreal Engine Handbook

Default

Projected Tel.

Valid Telepor.

Teleport Trac
EEELTTER W0

Snap Turn De. -45,0

Teleport Trac. 0 Array elerr @ ﬁ

Tele port Pr :::j_ 0,0 0,0 0,0

11. Locate the project's main Build file, in our case
VirtualHandCpp/Source/VirtualHandCpp/VirtualHandCpp.Build.cs and add the
InputDevice, OpenXRHMD, SenseGloveBuildHacks, SenseGloveDebug,
SenseGloveSettings, and SenseGloveTracking modules as either a private or
public dependency.

347 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

using UnrealBuildTool;

public class VirtualHandCpp : ModuleRules

{
public VirtualHandCpp(ReadOnlyTargetRules Target) : base(Target)

{
PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

PublicDependencyModuleNames.AddRange (new string[] { "Core",
"CoreUObject", "Engine'", "InputCore" });

PrivateDependencyModuleNames.AddRange (new string[]

{
"InputDevice",
"OpenXRHMD",
"SenseGloveBuildHacks",
"SenseGloveDebug",
"SenseGloveSettings",
"SenseGloveTracking"

s

// Uncomment if you are using Slate UI
// PrivateDependencyModuleNames.AddRange (new string[] { "Slate",
"SlateCore" 1});

// Uncomment if you are using online features
// PrivateDependencyModuleNames.Add("OnlineSubsystem");

// To 1include OnlineSubsystemSteam, add it to the plugins section 1in
your uproject file with the Enabled attribute set to true
}
}

12. Locate the C++ header and source file for the AbebugPawn inside the project in
your C++ IDE. In our case they are located at
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.h and
VirtualHandCpp/Source/VirtualHandCpp/DebugPawn.cpp .

13. Modify the DebugPawn.h header file to look like this:

348 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Pawn.h"

#include "SGSettings/SGDebugGizmoSettings.h"
#include "DebugPawn.generated.h"

UCLASS ()
class VIRTUALHANDCPP_API ADebugPawn : public APawn

{
GENERATED_BODY ()

private:
// The virtual hand drawing settings.
UPROPERTY (EditDefaultsOnly, Category='"DebugPawn",
meta=(AllowPrivateAccess="false"))
FSGDebugGizmoSettings HandDrawingSettings;

public:
// Sets default values for this pawn's properties
ADebugPawn () ;

protected:
// Called when the game starts or when spawned
virtual void BeginPlay() override;

public:
// Called every frame
virtual void Tick(float DeltaTime) override;

// Called to bind functionality to -input
virtual void SetupPlayerInputComponent(class UInputComponentx
PlayerInputComponent) override;

private:
// The method responsible for drawing a virtual hand.
void DrawHand (EControllerHand Hand) const;
+s
14. Modify the DebugPawn.cpp implementation file to look like this:

349 /461

The SenseGlove Unreal Engine Handbook

// Fill out your copyright notice in the Description page of Project
Settings.

#include '"DebugPawn.h"

#include "SGDebug/SGDebugGizmo.h"
#include "SGTracking/SGXRTracker.h"

// Sets default values
ADebugPawn: : ADebugPawn ()
{
// Set this pawn to call Tick() every frame. You can turn this off to
improve performance if you don't need it.
PrimaryActorTick.bCanEverTick = true;

// Set the default virtual hand drawing settings.
HandDrawingSettings = FSGDebugGizmoSettings{
1.0f,
FColor{255, 0, 0, 255},
FColor{®, 255, 0, 255},
FColor{®, ®, 255, 255},
false,
1.1f,
0,
0.2f,
b5

// Called when the game starts or when spawned
void ADebugPawn: :BeginPlay ()
{
Super::BeginPlay();
}

// Called every frame
void ADebugPawn::Tick(float DeltaTime)

{
Super::Tick(DeltaTime);
// Attempt at drawing the left/right virtual hands every frame.
DrawHand (EControllerHand::Left);
DrawHand (EControllerHand: :Right) ;
}

// Called to bind functionality to input
void ADebugPawn: :SetupPlayerInputComponent (UInputComponentx*

350 /461

The SenseGlove Unreal Engine Handbook

PlayerInputComponent)

{
}

Super: :SetupPlayerInputComponent (PlayerInputComponent) ;

void ADebugPawn: :DrawHand(const EControllerHand Hand) const

{

data

/1

Get the world and cache +it, if it's null we return early.

UWorld* World{GetWorld()};
if (!IsvValid(World))

{

return;

FXRMotionControllerData MotionControllerData;
const bool bGotMotionControllerData =
FSGXRTracker: :GetMotionControllerData(

/1
if
{

/1
if

/1

/]
if

World, Hand, MotionControllerData);

Return if the struct data is invalid!
(!bGotMotionControllerData || !MotionControllerData.bValid)
return;

Return if the device is not being tracked!

(MotionControllerData.TrackingStatus == ETrackingStatus: :NotTracked)
return;

Ensure that MotionControllerData.DeviceVisualType is a hand!
('ensureAlwaysMsgf (MotionControllerData.DeviceVisualType

== EXRVisualType: :Hand,
TEXT ("Invalid DeviceVisualType type!")))

Ensure that MotionControllerData.HandKeyPositions has the position
for 26 joints!
(!ensureAlwaysMsgf (MotionControllerData.HandKeyPositions.Num()

== EHandKeypointCount,

TEXT ("Invalid HandKeyPositions count!")))

return;

351/461

The SenseGlove Unreal Engine Handbook

// Ensure that MotionControllerData.HandKeyRotations has the rotation

data
// for

26 joints!

if (!ensureAlwaysMsgf(MotionControllerData.HandKeyRotations.Num()

== EHandKeypointCount,
TEXT ("Invalid HandKeyRotations count!")))

return;

}

// Iterate over the hand joint positions and rotations!
for (int32 JointIndex = 0; JointIndex < EHandKeypointCount; ++JointIndex)

{

const FVector& JointPosition{

s

MotionControllerData.HandKeyPositions[JointIndex]

const FQuat& JointRotation{

}s

/7
/7
/1
/7
/7
/7
/1

MotionControllerData.HandKeyRotations[JointIndex]

Draw a single joint's gizmo!

Please note that we could alternatively:

Use FSGDebugCube::Draw() to draw a cube.

Or use the FSGDebugVirtualHand::Draw() method and pass the
MotionControllerData directly to draw the virtual hand

all at once without iterating the joints. But, that's not
goal of this tutorial.

FSGDebugGizmo: :Draw(World, JointPosition, JointRotation,
HandDrawingSettings);

}
}

15. Now, rebuild the source code and go back to the VRTemplateMap, then use the
VR Preview button to run the game. If everything's done correctly, you should
be able to see the virtual hands inside your VR simulation.

352 /461

The SenseGlove Unreal Engine Handbook

353/461

The SenseGlove Unreal Engine Handbook

Third-Party OpenXR Integrations

The SenseGlove Unreal Engine Plugin registers itself as an OpenXRHandTracking
provider, making it a fully compatible, drop-in replacement for Epic’'s own
OpenXRHandTracking plugin in Unreal Engine. This allows it to integrate seamlessly
with any third-party system or plugin that can consume OpenXR hand-tracking data.

One notable example is the open-source, MIT-licensed VR Expansion Plugin (VRE).

Important

As explained in the Third-Party Tutorials: Consuming OpenXR Hand-Tracking
Data section, it's entirely possible to build your own custom hand interaction
system without relying on SGPawn or any third-party OpenXR-compatible
interaction plugin altogether.

If your project requires finer-grained control than what these solutions offer,
the tutorials in that section will guide you through understanding the OpenXR
hand-tracking data format in Unreal Engine and help you implement a fully
tailored interaction system from the ground up in a few hours.

As the SenseGlove Unreal Engine Plugin is fully OpenXR-compliant, it provides
OpenXR hand-tracking data in the expected format and takes over as the active
provider within Unreal. If your existing interaction system (e.g. VRE plugin) already
uses OpenXR hand-tracking, SenseGlove will function as a direct tracking source
instead of a real hand.

Note

Since most hand-tracking systems are not capable of haptics feedback,
integrating SenseGlove's haptic feedback requires a small amount of additional
effort.

The SenseGlove APl is fully exposed to Unreal Engine via C++ and Blueprint, so
triggering haptic feedback is as simple as calling a function. For more
information, refer to the Blueprint Changes section below.

354 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/index.html#vr-expansion-plugin
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-senseglove-default-classes/sgpawn.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/index.html#blueprint-changes

Important

The SenseGlove Unreal Engine Handbook

If you're using a third-party OpenXR hand interaction system, configuring the
Wrist-Tracker Hardware Settings will likely have no effect, and your hand offsets
may appear at the incorrect location in the scene.

This is because those settings are only recognized by SenseGlove’s native actors
and components such as SGPawn, SGWristTrackerComponent, etc. Most third-

party plugins are unaware of these settings. As a result, you'll need to figure out
how to manually apply the appropriate offsets within your chosen OpenXR hand
interaction system.

For example, the VRE plugin provide similar configurations in their plugin's
settings section. For more information refer to the Changing Wrist-Tracker
Offsets section below.

Comparison of Supported OpenXR Hand-Interaction

Systems
Built- Works out of Beginner- Learning
in? the box? friendly? Curve
Most
SGPawn Yes beginer- Very eas
Yes . '
friendly
. Requires a
SenseGlove X Req.uwes few hours of
Blueprint or : Moderat
OpenXR Yes : watching
C++ coding

tutotrials

355/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/index.html#changing-wrist-tracker-offsets
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/index.html#changing-wrist-tracker-offsets

The SenseGlove Unreal Engine Handbook

Built- Works out of Beginner- Learnin
in? the box? friendly? Curve
X Best suited
VR : for
| —
Expansion X) Pgrtlally intermediate i\ Steep
. No requires setup
Plugin or advanced
users
Other
OpenXR- X ? Check their ? Check their ? Checkth
compatible No documentation documentation documentat
Plugins

VR Expansion Plugin

The VR Expansion Plugin (VRE) is a robust, community-driven plugin for Unreal
Engine that focuses on advanced VR interaction and gameplay mechanics. It is open-
source (MIT licensed), actively maintained, and has received support from Epic via
the MegaGrants program.

Designed to extend Unreal's capabilities for virtual reality, VRE offers a modular set
of tools covering:

e Multiplayer and networking
e Locomotion systems
e Object gripping and interaction
K CTstommoverentara prvstes e S

The plugin is particularly useful for teams building sophisticated VR experiences.
While it's beginner-friendly to an extent, its depth and flexibility are best suited for
intermediate to advanced Unreal Engine developers. Whether you're prototyping
with built-in features or extracting specific systems for your own framework, VRE
offers a rich foundation for VR development.

Note

356 /461

https://vreue4.com/
https://www.unrealengine.com/en-US/megagrants

The SenseGlove Unreal Engine Handbook

For support and assistance with the VRE plugin, you can join its active and
welcoming Discord community, known for being responsive and supportive.

SGVRETemplate Demo Scene

To showcase how SenseGlove can be integrated with OpenXR-compatible third-party
interaction systems, SenseGlove provides a ready-to-use VR Expansion Plugin
Integration Demo for Unreal Engine 5.4.

This repository includes UE 5.4 -compatible versions of both the SenseGlove and
VR Expansion plugins, with all necessary setup and configuration already in place.
Simply download the project and it should run out of the box, allowing you to
explore the integration without additional setup.

Note

SenseGlove provides this demo to demonstrate the potential for integrating
with third-party OpenXR-based hand interaction systems. Please note that the
VR Expansion Plugin is a third-party solution, and as such, we do not offer
official support for it.

For help with the VRE plugin, refer to its documentation at vreue4.com and
consider joining the official VRE Discord community, which is active,
supportive, and very responsive.

SGVRETemplate Modifications

The SGVRETemplate is built on top of the VR Expansion Plugin Example Template.
However, since the original template is not directly compatible with SenseGlove,
several adjustments were necessary.

In addition, a few known issues with OpenXR support in the VR Expansion Plugin for
Unreal Engine 5.4 required us to modify the plugin itself to ensure smooth
integration.

357 /461

https://discord.gg/P4V7TY8BQy
https://discord.gg/P4V7TY8BQy
https://dev.azure.com/SenseGlove/_git/SGVRETemplate
https://dev.azure.com/SenseGlove/_git/SGVRETemplate
https://vreue4.com/
https://discord.gg/P4V7TY8BQy
https://dev.azure.com/SenseGlove/_git/SGVRETemplate
https://github.com/mordentral/VRExpPluginExample

The SenseGlove Unreal Engine Handbook

Below is an overview of the key modifications made to both the project template and
this version of the VRE plugin.

Blueprint Changes

e Content/VRE/Core/Character/BP_VRCharacter: Four functions were added:
SendVibration, SendFFB, SendSqueeze, and ResetHaptics.These functions
retrieve the glove instance and send the appropriate haptic command to it. In
the OnPossessed event, Load Controller by Name was added along with a string
uproperty Tracking 0ffset, which is used to load the correct tracking offsets

based on the selected profile.

Note

If you'd like to implement your own haptic functions, the most convenient
approach is to safely acquire a glove instance. Once you have the glove instance,
applying haptic feedback is as simple as calling the appropriate function.

SenseGlove supports three types of haptics: Vibrations, Force-feedback, and
Wrist-squeeze.

e Using Send Custom Waveform, you can send vibrations to the glove
instance.

e Using Queue Command Force Feedback Levels,you can send force-feedback.

e Using Queue Command Wrist Squeeze, you can send a wrist-squeeze
command to the glove.

Each of these functions can be called directly on the glove instance to trigger
the desired haptic feedback.

e Content/VRE/Core/GraspingHands/GraspingHandManny: In the
SetupFingerAnimations function, replace the hardcoded check for HandType ==
Left with a string comparison: convert the enum to a string and check if it
contains "Left" . This allows compatibility with alternative tracking sources
such as "Left Foot".

358 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/safe-glove-access-blueprint/

The SenseGlove Unreal Engine Handbook

C++ Changes

e Plugins/VRExpansionPlugin/Source/VRExpansionPlugin/Public/Grippables/
HandSocketComponent.h: The following line was added as a public UPROPERTY

in the header file:

UPROPERTY (EditAnywhere, BlueprintReadWrite, Category = "Hand Animation")
float HandAnimationProgress = 0.0f;

¢ Plugins/VRExpansionPlugin/Source/VRExpansionPlugin/Private/Grippables
/HandSocketComponent.cpp: In the function bool
UHandSocketComponent: : GetBlendedPoseSnapShot (FPoseSnapshot& PoseSnapShot,
USkeletalMeshComponentx TargetMesh, bool bSkipRootBone, bool bFlipHand) ,
the TrackLocation calculation was modified from:

if (TrackIndex != INDEX_NONE && (!bSkipRootBone || TrackIndex != 0))

{
double TrackLocation = 0.0f;

HandTargetAnimation->GetBoneTransform(LocalTransform,
FSkeletonPoseBoneIndex (TrackMap[TrackIndex].BoneTreeIndex), TrackLocation,
false);

}

else

{
To:

if (TrackIndex != INDEX_NONE && (!bSkipRootBone || TrackIndex != 0))

{
double TrackLocation = HandTargetAnimation->GetPlayLength() =*

HandAnimationProgress;
HandTargetAnimation->GetBoneTransform(LocalTransform,

FSkeletonPoseBoneIndex (TrackMap[TrackIndex].BoneTreeIndex), TrackLocation,

false);

}

else

{

¢ Plugins/VRExpansionPlugin/Source/VRExpansionPlugin/Private/GripMotio
nControllerComponent.cpp: In the function void

359 /461

The SenseGlove Unreal Engine Handbook

UGripMotionControllerComponent: :GetCurrentProfileTransform(bool
bBindToNoticationDelegate) , the following logic was updated from:

if (HandType == EControllerHand::Left || HandType == EControllerHand: :AnyHand
|| !VRSettings->bUseSeperateHandTransforms)
{

NewControllerProfileTransform = VRSettings-
>CurrentControllerProfileTransform;

}
else if (HandType == EControllerHand: :Right)

{
NewControllerProfileTransform = VRSettings-
>CurrentControllerProfileTransformRight;

}
To:

if (UEnum: :GetDisplayValueAsText(HandType).ToString().Contains("Left") ||

HandType == EControllerHand::AnyHand || !VRSettings-
>bUseSeperateHandTransforms)
{

NewControllerProfileTransform = VRSettings-
>CurrentControllerProfileTransform;

}
else if (UEnum::GetDisplayValueAsText(HandType).ToString().Contains("Right"))

{
NewControllerProfileTransform = VRSettings-
>CurrentControllerProfileTransformRight;

}

The following function was also updated; from:

360 /461

The SenseGlove Unreal Engine Handbook

void UGripMotionControllerComponent: :GetHandType(EControllerHand& Hand)
{
if (!IMotionController: :GetHandEnumForSourceName (MotionSource, Hand))
{
// Check if the palm motion source extension is being used
// I assume eventually epic will handle this case
if (MotionSource.Compare(FName(TEXT("RightPalm"))) == 0 ||
MotionSource.Compare(FName (TEXT ("RightWrist"))) == 0)
{
Hand = EControllerHand::Right;
}
// Could skip this and default to left now but would rather check
else if (MotionSource.Compare(FName (TEXT("LeftPalm"))) == 0 ||
MotionSource.Compare(FName (TEXT ("LeftWrist"))) == 0)

{
Hand = EControllerHand::Left;
}
else
{
Hand = EControllerHand::Left;
}
}
}
To:

361/461

The SenseGlove Unreal Engine Handbook

void UGripMotionControllerComponent: :GetHandType(EControllerHand& Hand)
{

if (!IMotionController: :GetHandEnumForSourceName (MotionSource, Hand))
{
// Check if the palm motion source extension is being used
// I assume eventually epic will handle this case
if (MotionSource.Compare(FName(TEXT("RightPalm"))) == 0 ||
MotionSource.Compare(FName (TEXT ("RightWrist"))) == 0 ||
MotionSource.ToString().Contains("Right"))
{
Hand = EControllerHand::Right;
}
// Could skip this and default to left now but would rather check
else if (MotionSource.Compare(FName (TEXT("LeftPalm"))) == 0 ||
MotionSource.Compare(FName (TEXT("LeftWrist"))) == 0 ||
MotionSource.ToString().Contains("Left"))

{

Hand = EControllerHand::Left;
}
else
{

Hand = EControllerHand::Left;
}

Changing Wrist-Tracker Offsets

If you are using wrist-tracking hardware supported by the SenseGlove plugin, you
can change the offsets inside BP_VRCharacter usingthe uproperty Tracking Offset
typing or copying any of the following, depending on your hardware:

e SenseGlove_Quest3: The wrist-tracking controller profile for for Meta Quest3.

e SenseGlove_ViveWristTrackers: The wrist-tracking controller profile for HTC
VIVE wrist trackers.

Changing Motion Source

In BP_VRCharacter , you can change the wrist-tracking motion source for each hand.
This is required depending on which tracker you are using.

362 /461

The SenseGlove Unreal Engine Handbook

Adding More Gestures

In the GraspingHandManny Blueprint, we've created a simple function called
SaveHandPose . If you press the space Bar while the game is running, it will save the

current pose of the corresponding hand. The pose is stored in a gestures database
located under Content/SenseGlove with the default name NewHandPose . You should

rename the pose to something meaningful when you intend to use it.

It's helpful to add an Event Dispatcher to the GraspingHandManny Blueprint, which is
triggered in the Event Graph by the on New Gesture Detected event from the
OpenXRHandPose component. This system is index-based rather than name-based, so
keep that in mind when adding more dispatchers. By default, we've included
examples for Teleport, Grab, Release, and Use.

Video Summary

This short video provides an overview of some of the key changes and modifications
behind the SGVRETemplate demo scene, mentioned above.

363 /461

The SenseGlove Unreal Engine Handbook

SGVRETemplate Demo Calibration Scene

The SGVRETemplate includes a basic Calibration Scene located at
Content/SenseGlove/Maps/Calibration . Inside this level, you'll find a copy of
Content/SenseGlove/Blueprints/Calibration/BP_Calibrator Blueprint responsible for
transitioning to your desired target map after the calibration process is complete.
You can configure the target map directly within this Blueprint by adjusting the
Level to Load uproperty.

364 /461

The SenseGlove Unreal Engine Handbook

Third-Party Tutorials: Consuming
OpenXR Hand-Tracking Data

Introduction to Virtual Reality, OpenXR Hand-
Tracking, and Gesture Detection in Unreal Engine

In this tutorial, you'll learn how to get the OpenXR Hand-Tracking Data from the
Unreal Engine APl and how to consume it to draw virtual hand models using cubes
(as hand joints). It will also dive into gesture recognition by implementing a simple
pinch gesture recognition.

In the first part, it will focus on UE 4.26 to 5.4 API. And, in the second part, you'll
learn how to update the project to work with 5.5.

365/461

The SenseGlove Unreal Engine Handbook

Procedural Virtual Hand Mesh Animation Using
OpenXR Hand-Tracking Data

Building on the Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture
Recognition in Unreal Engine tutorial, this slightly more advanced tutorial will dive
deeper into the following topics:

e Transitioning seamlessly between motion controller and hand-tracking modes
in Unreal Engine.

e Adding custom debugging gizmos to improve development and testing
workflows.

e Visualizing debug virtual hands by incorporating the custom gizmos.

e Animating virtual hand meshes with OpenXR hand-tracking data, moving
beyond basic joint representation with cubes.

e Re-using and adapting the gesture recognition code from the introductory
tutorial to integrate with the new animated virtual hand meshes. This guide will
help you take your VR projects to the next level with polished and practical
implementations.

Part 1:

Part 2:

366 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/index.html#introduction-to-virtual-reality-openxr-hand-tracking-and-gesture-detection-in-unreal-engine
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/index.html#introduction-to-virtual-reality-openxr-hand-tracking-and-gesture-detection-in-unreal-engine

The SenseGlove Unreal Engine Handbook

367 /461

The SenseGlove Unreal Engine Handbook

Low-level Blueprint API

Unfortunately, due to Unreal Engine's limited availability of automated
documentation generation tools, there is no updated online documentation for the
SenseGlove Blueprint APIl. However, this does not mean that no documentation is
available. In fact, most of the Blueprint code is already documented within the
relevant header files. Any modules with the Kismet postfixin the name contain the
Blueprint documentation. For example, the Blueprint documentation for the core
module can be found inside the Source/SenseGloveCoreKismet/Public/SGCoreKismet
directory.

There is also an outdated Blueprint documentation hosted on GitLab. This
documentation was generated for the early releases of the plugin using
kamrann/KantanDocGenPlugin and kamrann/KantanDocGenTool, which is no longer
maintained.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine Blueprint project and a video tutorial:

368 /461

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://github.com/kamrann/KantanDocGenPlugin
https://github.com/kamrann/KantanDocGenTool
https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://youtu.be/9ICAH2ZUvVk

The SenseGlove Unreal Engine Handbook

Low-level C++ API

Due to Unreal Engine's limited availability of automated documentation generation
tools, there is no updated online documentation for the SenseGlove Unreal Engine
C++ API. However, this does not mean that no documentation is available. A
significant portion of the APl is documented within the relevant header files. For
example, the C++ APl documentation for the Core module can be found inside the
Source/SenseGloveCore/Public/SGCore directory.

Efforts are ongoing to generate comprehensive documentation using PsichiX/unreal-
doc, but progress has been hindered by various known issues.

Nevertheless, since this plugin builds on top of the SGConnect and SGCoreCpp third-
party C++ libraries, the upstream documentation provides detailed information on
various aspects of the underlying SenseGlove C++ API.

There are also other outdated materials that might still be partially relevant. These
include an example Unreal Engine C++ project and a video tutorial:

369 /461

https://crates.io/crates/unreal-doc
https://crates.io/crates/unreal-doc
https://github.com/PsichiX/unreal-doc/issues
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgconnect
https://senseglove.gitlab.io/SenseGloveDocs/native/core-api-intro.html#sgcorecpp
https://senseglove.gitlab.io/SenseGloveDocs/native/cpp-reference.html
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://youtu.be/9ICAH2ZUvVk

The SenseGlove Unreal Engine Handbook

Platform Support Matrix

Windows Windows Windows Linux x86- A:'.\i:'c'::;

(MSvC (MsvC (MsvC 64 (Natiye (Native

2017) 2019) 2022) Toolchain) Toolchail

5.7 X X v2.7.X v2.7.X v2.7.

5.6 X X v2.7.X v2.7.X v2.7.

5.5 X) ¢ v2.7.X v2.7.X v2.7.

5.4 X X h v2.7.x i v2.7.x h\v2.7.

5.3 X i\ v2.6.x i\ v2.6.x i\ v2.6.x i\ v2.6.

5.2 X i\ v2.4.X i v2.4.x i\ v2.4.X i\ v2.4.

5.1 X i\ v2.0.x i v2.0.x i\ v2.0.x i\ v2.00

5.0 X i\ v1.6.x i\ v1.6.x i\ v1.6.x h v1.6.

4.27 \ v1.4.x i\ v1.4.x i\ v1.4.x i v1.4.x i\ v1.4o
4.26 i v1.0.x i\ v1.0.x) ¢ i\ v1.0.x X
4.25 i v1.0.x i v1.0.x) ¢ i\ v1.0.x) ¢
4.24 i v1.0.x i v1.0.x X i v1.0.x X

370/ 461

The SenseGlove Unreal Engine Handbook

Windows Windows Windows Linux x86- Linux

(MSVC (MSVC (MSVC 64 (Native ’m;::,i

2017) 2019) 2022) Toolchain) Toolchail
4.23 i v1.0.x i\ v1.0.x) ¢ i\ v1.0.x) ¢
4.22 i v1.0.x i\ v1.0.x X i v1.0.x X

Supported
i\ End-of-life (EOL) release that is not supported anymore and might be

lacking features
X Not supported at all
? Unknown or untested

Remarks:

Per Epic's Marketplace Guidelines in regards to Code Plugins (sections 2.6.3.d
and 3.1.b), we are only able to distribute or update the SenseGlove plugin for
the last 3 stable versions of Unreal Engine. As a result, we won't be able to
publish updates or bug fixes for the older versions of the Engine except on rare
occasions and only through our official repository on Microsoft Azure DevOps.
All third-party libraries on Windows built against Windows SDK 16.0.

Oculus and VIVE support is only provided through the recommended Android
NDK versions by Epic Games.

wjwwood/serial requires Android NDK API Level 28+ in order to be built
successfully.

All third-party libraries target Android NDK API Level 29, thus any project
relying on the plug-in should be build with the same NDK API Level.

Meta Quest PCVR-mode support is only provided through the Epic OpenXR
plugin. Furthermore, the Standalone-mode support is also provided through
the Epic OpenXR plugin only. Please note that enabling the Meta XR plugin will
result in crashes or unexpected behavior. Meta XR plugin compatibility is being
worked on at the moment and might be supported in the future.

371/461

https://www.unrealengine.com/en-US/marketplace-guidelines
https://github.com/wjwwood/serial
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#meta-quest
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#meta-quest
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html//getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/#meta-quest

The SenseGlove Unreal Engine Handbook

e While HTC VIVE PCVR-mode support is only provided through the Epic OpenXR
plugin, the standalone-mode support is only provided through the official HTC
ViveOpenXR plugin and no other plugin is supported.

372 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/#htc-vive

The SenseGlove Unreal Engine Handbook

Planned Features Completion Status

Implemented as of v2.7.x

@ Full SenseGlove low-level core APl access through Unreal C++.

@ Full SenseGlove low-level core APl access through Blueprint.

@ DK 1 Support.

@ Nova 1 Support.

@ Nova 2 Support.

@ Support for Microsoft Windows as a development platform.

@ Support for GNU/Linux as a development platform.

@ Support for Microsoft Windows as a deployment platform.

@ Support for GNU/Linux x64 as a deployment platform.

@ Support for GNU/Linux AArch64 as a deployment platform.

@ Support for Android as a deployment platform.

@ Support for Oculus Quest 2, Oculus Quest Pro, Oculus Quest 3, and Oculus
Quest 3s.

@ Support for HTC VIVE Pro, HTC VIVE Focus 3, HTC XR Elite, and HTC VIVE
Focus Vision.

@ Support for HTC VIVE Trackers and HTC VIVE Wrist Trackers.

@ Support for both Bluetooth Serial and Bluetooth Low Energy.

@ On-device calibration for Android without the need for SenseCom.

@ Haptic feedback including force feedback, buzz, and thumper commands.
@ A customizable Grab component that could be added to any actor.

@ A customizable Touch component that could be added to any actor.

@ Ability to grab, release, and throw objects around.

@ Separation of the real and virtual hand rendering.

@ An out-of-the-box customizable SGPawn with the ability to be extended in
C++ and Blueprint.

@ Easy wrist/hand tracking debugging using the SenseGlove Debug module.
@ A generic Settings module with the ability to override settings.

@ C++/Blueprint interaction events such as OnGrabStateUpdated,
OnTouchStateUpdated, OnActorGrabbed, OnActorReleased,

373 /461

The SenseGlove Unreal Engine Handbook

OnActorBeginTouch, and OnActorEndTouch.

@ Afall back to HMD and wrist tracker hardware auto-detection mechanism
when automatic detection of the wrist tracker hardware is desired.

@ OpenXR-compatible hand tracking (XR_EXT_hand_tracking) support.

@ FXRMotionControllerData compatible hand animation system on UE
versions 5.2, 5.3,and 5.4.

@ FXRHandTrackingState compatible hand animation system on UE versions
5.5+.

@ FXRMotionControllerData compatible wrist tracking system on UE versions
5.2, 5.3,and 5.4.

@ FXRHandTrackingState compatible wrist tracking system on UE versions
5.5+.

@ FXxRMotionControllerData compatible hand interaction manipulation system
on UE versions 5.2, 5.3,and 5.4.

@ FXRHandTrackingState compatible hand interaction manipulation system on
UE versions 5.5+.

@ Ability to fallback to hand tracking when a glove is not present and use the
bare hands for interactions, or a combination of glove and hand tracking if no
motion controller input is detected.

@ The SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,
Skeleton Editor, or Skeletal Mesh Editor.

@ A flexible virtual hand animation system that can take the mesh bone's
transforms into account for a more reliable hand animation.

@ Ability to manage the Engine Scalability Settings through the SenseGlove
plugin in order to change the graphics settings on the fly.

@ Ability to automatically ask for the required permissions on Android when
the plugin is enabled in any UE project.

@ viveOpenXxR plugin compatibility.

374 /461

The SenseGlove Unreal Engine Handbook

Upcoming features planned for the v2.7.x release

Planned features long-term

@ Get tracking input from sources other than a SenseGlove device.

@ Be able to assign behaviors to different objects (meshes) in the scene (e.g.
Slider, Hinge, basic Grabables, etc).

@ Make it so developers can define or extend their own behavior(s) to an
object through Code / Blueprint (e.g. | want a car door that is like a slider, but
follows a path rather than a straight line).

@ Make the hand(s) able to push around physics-driven objects (for as much
as their behaviors allow) (in backlog).

@ Be able to grab objects with up to 2 hands (and move them around with
both hands at the same time in a way that seems realistic).

@ Ensure that our virtual hands (and the objects they hold) do not phase
through other physics objects (e.g. walls and tables).

@ Allow other scripts to force a grab and/or release to occur (for example,
when you place it apart at the designated location, it gets removed from your
hand and snaps into place).

@ Have some form of weight simulation by making certain objects harder to
push, lowering manipulation speed, or making objects only moveable with two
hands.

@ (Optional) Make it so the fingers of your virtual hands do not clip inside the
meshes you are holding (certain people see this as an indicator of how fast the
Force-Feedback activates - but it's basically just rendering).

375/461

The SenseGlove Unreal Engine Handbook

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic
Versioning.

[2.7.0] - 2025-11-18

This minor release focuses on delivering performance improvements, made possible
by major optimizations in the underlying proprietary SenseGlove libraries, while also
introducing some breaking changes.

Added

e Added support for UE 5.7.

e Added support for Android NDK r27c, which is the recommend Android SDK
since UE 5.6.1 and the default for UE 5.7+ for Android Standalone builds.

e Added support for Epic Cross and Native Toolchains v26, which is shipped with
the UE 5.7 and GNU/Linux support.

e Added prebuilt binaries for third-party library {fmt} Formatting Library on all
supported platforms. This third-party library is a required dependency of
SenseGlove libraries >= v2.300.0.

e Added prebuilt binaries for third-party library: Loguru Logging Library on all
supported platforms. This third-party library is a required dependency of
SenseGlove libraries >= v2.300.0.

e Added third-party module SGCommonThirdPartyLibs .

e Added third-party module SGConnectShmThirdPartyLibs .

e Added third-party module SGCoreShmThirdPartyLibs .

e Added third-party module SGCoreThirdPartyHeaders .

e Added third-party module SGFmtThirdPartyLibs .

e Added third-party module SGLogThirdPartyLibs .

376 /461

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html
https://github.com/fmtlib/fmt
https://github.com/emilk/loguru

The SenseGlove Unreal Engine Handbook

e Added third-party module SGLoguruThirdPartyLibs .

e Added third-party module sGWjwwoodSerialThirdPartyLibs to replace
SGSerialThirdPartyLibs while retaining sGSerialThirdPartyLibs for a different
purpose. See the relevant comment in the Changed section below.

e Added UPROPERTY USGTouchComponent: :VibrotactileAmplitude .

e Added UPROPERTY uSGTouchComponent: :VibrotactileFrequency .

e Added method usGTouchComponent::GetVibrotactileAmplitude() .

e Added method usGTouchComponent::SetVibrotactileAmplitude() .

e Added method USGTouchComponent::GetVibrotactileFrequency() .

e Added method USGTouchComponent::SetVibrotactileFrequency() .

e Added Blueprint-accessible method
USGTouchComponentKismetLibrary: :GetVibrotactileAmplitude() .

e Added Blueprint-accessible method
USGTouchComponentKismetLibrary: :SetVibrotactileAmplitude() .

e Added Blueprint-accessible method
USGTouchComponentKismetLibrary: :GetVibrotactileFrequency() .

e Added Blueprint-accessible method
USGTouchComponentKismetLibrary: :SetVibrotactileFrequency() .

Fixed

e Fix atypo in the function name sGDevicelList::SenseCommRunning() . This fix
breaks ABI and APl compatibility with previous versions of the plugin and
affects both C++ and Blueprint code.

Changed

® SGDevicelist::SenseCommRunning() has been renamed to
SGDeviceList::SenseComRunning() due to a typo. This change breaks ABI and
APl compatibility with previous versions of the plugin and affects both C++ and
Blueprint code.

e Bumped the SenseGlove libraries to v2.305.3-17a826b6e . This release of the
SenseGlove libraries disables RTTI/Exceptions for the most parts and isolates it
to a minor portion of the code base, which yields noticable performance gains.

377 /461

The SenseGlove Unreal Engine Handbook

Futhermore, some optiomizations are done in the multi-threaded code, such as
replacing Spinlocks with Adaptive Mutexes (a hybrid Mutex/Spinlock).

e As aresult of SenseGlove libraries >= v2.300.0 changing it's directory
structure, the ThirdParty folder's directory structure has been revamped.

e Renamed third-party module SGSerialThirdPartyLibs to
SGWjwwoodSerialThirdPartyLibs since SenseGlove libraries >= v2.300.0 ships a
new static library named sgserial. Thus, to avoid confusion and naming
conflicts the third-party serdial static library is now provided by the
SGWjwwoodSerialThirdPartyLibs module and sgserial is provided by the
SGSerialThirdPartyLibs module.

® FSGGloveTrackingSettings::GloveConnectivityCheckInterval settings have
been renamed to FSGGloveTrackingSettings::DataRetrievalRefreshRate for
adoption other than glove connectivity use cases.

e USGVirtualHandComponent: :GetMotionControllerData() signature has changed.

e USGVirtualHandComponent::GetHandTrackingState() signature has changed.

® USGWristTrackerComponent::GetMotionControllerData() Signature has changed.

® USGWristTrackerComponent::GetHandTrackingState() signature has changed.

® USGVirtualHandComponentKismetLibrary::GetMotionControllerData() Signature
has changed.

® USGVirtualHandComponentKismetLibrary::GetHandTrackingState() signature has
changed.

e SGPawn and SGTouchComponent NO longer use the legacy QueueVibroLevels
method for applying vibrotactile feedback. Instead it's been replaced with
SendCustomwWaveform .

e Changed USGTouchComponent::VibrotactileDuration UPROPERTY'S maximum
value to 1.ef.Previously it was uncapped, and now any value beyond 1.ef
seconds is clamped.

Removed

e Dropped support for Unreal Engine 5.3, which was already deprecated in the
v2.6.x release series.

e Dropped support for MSVC vi42 (Visual Studio 2019), since UE 5.3 was the
last supported version relying on it.

378 /461

The SenseGlove Unreal Engine Handbook

e Cleaned up remnants of the long-removed Unreal Engine 5.2 from third-party
module x.Build.cs files.

e Cleaned up remnants of the long-removed Unreal Engine 5.2 from
SenseGlove.Build.cs, SenseGloveKismet.Build.cs,
SenseGloveTracking.Build.cs, files.

e Cleaned up remnants of the long-removed Unreal Engine 5.2 from
SenseGloveTracking module.

® USGVirtualHandComponent::GetMotionControllerState() has been removed.

e USGWristTrackerComponent::GetMotionControllerState() has been removed.

e USGVirtualHandComponentKismetLibrary::GetMotionControllerState() has been
removed.

® USGWristTrackerComponentKismetLibrary::GetMotionControllerState() has been
removed.

e USGTouchComponent::VibrotactileLevel UPROPERTY has been removed.

e USGTouchComponent: :GetVibrotactileLevel() method has been removed.

® USGTouchComponent: :SetVibrotactileLevel() method has been removed.

® USGTouchComponentKismetLibrary::GetVibrotactileLevel() method has been
removed and is no longer available to Blueprint.

e USGTouchComponentKismetLibrary::SetVibrotactileLevel() method has been
removed and is no longer available to Blueprint.

Deprecated

e This is the last major/minor release to support Unreal Engine 5.4, and its
support will be removed in future minor or major releases. This is important
to keep in mind if your target development and deployment platform is
HTC VIVE in Standalone Mode. Unfortunately, HTC has not released any
updates to their HTC ViveOpenXR plugin since December 6, 2024. Their latest
release [1] [2], ViveOpenXR Plugin v2.5.0, supports only Unreal Engine 5.3
and 5.4.HTCVIVE PCVR Mode is unaffected and will remain fully functional
because, on Microsoft Windows, it is supported via the OpenXRViveTracker
Plugin, which is bundled with Unreal Engine and officially maintained by Epic
Games. If you still intend to target HTC in Standalone Mode, you are welcome to
continue using the latest SenseGlove Unreal Engine Plugin v2.7.x, which will
retain HTC Standalone Mode support. However, please keep in mind that once

379 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/standalone-mode/index.html#htc-vive
https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://web.archive.org/web/20251113165658/https://developer.vive.com/resources/openxr/unreal/unreal-download/latest/
https://archive.ph/DlrLr
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#htc-vive
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#openxrvivetracker-plugin
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/pcvr-mode/index.html#openxrvivetracker-plugin

The SenseGlove Unreal Engine Handbook

newer versions of the SenseGlove Unreal Engine Plugin are released and UE
5.4 is no longer supported, the latest release of the plugin supporting UE 5.4
will not receive new features, hardware support, or bug fixes. If at any point in
the future HTC releases a new version of their ViveOpenXR plugin that supports
any Unreal Engine version we actively support, in accordance with our support
policy and Platform Support Matrix, we will make every reasonable effort to
reintroduce HTC Standalone Mode support.

Documentation

e Added {fmt} Formatting Library License section.

e Added Loguru Logging Library License section.

e Updated Setting up the Touch System section to reflect the recent touch
system changes.

e Added a third-party tutorial to the Android Standalone Mode Deployment
section for UE 5.7 which provides a one-click Android development and build
environment setup, instructions on how to setup and use the new UE 5.7
project launcher, and how to enabled OpenXR hand-tracking support on Meta
Quest and HTC VIVE devices.

[2.6.3] - 2025-06-27

This patch release contains no changes to the plugin code. It includes only
documentation updates and improvements.

Documentation

e Added a new section to the handbook titled Third-Party OpenXR Integrations
section.
e Additional minor fixes and improvements that may not be listed here.

380/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/platform-support-matrix.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/fmt-formatting-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/loguru-loggin-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-touch-system/index.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/

The SenseGlove Unreal Engine Handbook

[2.6.2] - 2025-06-10

This patch release contains no changes to the plugin code. It includes only
documentation updates and improvements.

Documentation

e Added a third-party tutorial to the Optimizing Your Project for Higher FPS
section.

[2.6.1] - 2025-06-05

This patch release addresses several critical build and linking issues.

Fixed

e Fix alinking issue on GNU/Linux with UE 5.6 where SenseGlove libraries were
built against dynamic versions of libc++ and vlibc++abi libraries rather than

the static versions.
e Fix anissue where SenseGlove libraries for some targets were not actually built

with Cc++20 and still were built against C++17.
e Fix anissue where SenseGlove libraries for some targets were built or linked

with incorrect settings.
e Additional minor fixes and improvements that may not be listed here.

Changed

e Bumped the SenseGlove libraries to v2.204.0-3a37b1977 .

381/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/third-party-tutorials/

The SenseGlove Unreal Engine Handbook

Removed

e SenseGlove plugin no longer ships Boost or wjwwood's Serial Communication
Library header files as SenseGlove public headers shipped with v2.204.6-
3a37b1977 render them redundant. This significantly removes clutter, free up
disk space, and speed up builds to some extent.

Documentation

e Fix some changelog typos.
e Additional minor fixes and improvements that may not be listed here.

[2.6.0] - 2025-06-04

This minor release delivers broad compatibility, stability, and maintainability
enhancements, focusing on bringing full Unreal Engine 5.6 support, C++20
migration, and resolving various GNU/Linux build issues.

Added

e Added support for Epic Native Toolchain v25, which will be shipped with the
upcoming UE 5.6.

Fixed

e Resolved GNU/Linux build issues for Unreal Engine 5.5 and 5.6 caused by
incorrect linkage to GNU/GCC's libstdc++ instead of LLVM/Clang's libc++.
e Fix SGLog build issues on GNU/Linux with UE 5.6.

e Fix type conversion safety and consistency issues across all sGLog formatters.
e Resolved a critical deadlock between the rendering and game threads in Unreal
Engine 5.6 that occurrs when IHeadMountedDisplay::GetHMDMonitorInfo() IS

invoked from FSGXRTracker: :GetControllerTransform() . This is similar to

382 /461

The SenseGlove Unreal Engine Handbook

another critical deadlock issue (UE-212224), occurring during
PipelinedFrameState acquisition, addressed in the v2.5.0 release.
e Additional minor fixes and improvements that may not be listed here.

Changed

e Replaced Epic Native Toolchain v24 support with Epic Native Toolchain v2s
due to the fact that now v2s is the default Linux toolchain for UE 5.6.

e Revamped FSGHMDTracker to resolve a critical deadlock between the rendering
and game threads in Unreal Engine 5.6 that occurrs when
IHeadMountedDisplay: : GetHMDMonitorInfo() is invoked from
FSGXRTracker: :GetControllerTransform() . This is similar to another critical
deadlock issue (UE-212224), occurring during PipelinedFrameState acquisition,
addressed in the v2.5.0 release.

e Revamped the UBT logic for importing third-party headers and libraries by
introducing third-party dependency modules, sGBleThirdPartyLibs,
SGConnectThirdPartyHeaders, SGConnectThirdPartyLibs, SGCoreThirdPartylLibs,
and sGSerialThirdPartyLibs, which significantly reduces UBT boilerplate code
and increases maintainability.

e Bumped the SenseGlove libraries to v2.203.0-f3d3e676 .

e SenseGlove libraries have migrated to c++20 from c++17.

e Revamped the sGLog logging utility class to use TuniquePtr instead of
std: :unique_ptr.

e SGLog now relies on TAtomic<bool> for thread-safe initialization.

e SGBackend now relies on TAtomic<bool> for thread-safe initialization.

® USGBackend: :IsBackendInitialized() is no longer inlined and the initialization
flag has been moved to the private implementation of usGBackend .

e Bumped the SenseGlove Unreal Engine Marketplace Packager ve.6.0-4108c6f .

Removed

e Dropped support for Epic Native Toolchain v24, which was last shipped with
the preview release of UE 5.6, but has been removed from the 5.6 branch on

GitHub.

383/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html#250---2025-05-09
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html#250---2025-05-09
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html#250---2025-05-09
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html#250---2025-05-09
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/changelog.html#250---2025-05-09

The SenseGlove Unreal Engine Handbook

Deprecated

e This is the last minor release to support Unreal Engine 5.3 and its support will
be removed from the next minor or major releases.

Documentation

e Revised the outdated Plugin Directory Structure section to accurately reflect
the latest changes to the Source/ThirdParty directory layout changes.
e Lock the mdbook crate version to ve.49.e to avoid layout issues introduced

with ve.se.0.
e Additional minor fixes and improvements that may not be listed here.

[2.5.0] - 2025-05-09

This minor release primarily focuses on bringing Bluetooth Low Energy support to
the SenseGlove Unreal Engine integration.

Added

e Added support for Epic Native Toolchain v24, which will be shipped with the
upcoming UE 5.6.

Fixed

e Backend initialization error handling on Android.

e Fix a critical issue introduced by UE 5.5 that also affects the upcoming UE 5.6.
This is known as issue UE-212224, which leads to a deadlock during
PipelinedFrameState acquisition between the game and rendering threads.

e Additional minor fixes and improvements that may not be listed here.

384 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/directory-structure.html
https://github.com/rust-lang/mdBook
https://github.com/EpicGames/UnrealEngine/blob/ef1397773d160d39423feb90cb2196ddfaa1e2ae/Engine/Plugins/Runtime/OpenXR/Source/OpenXRHMD/Private/OpenXRHMD.cpp#L1740
https://github.com/EpicGames/UnrealEngine/blob/bedc5631b81cd39aaac8d61f303eacc86d4220f0/Engine/Plugins/Runtime/OpenXR/Source/OpenXRHMD/Private/OpenXRHMD.cpp#L1772

The SenseGlove Unreal Engine Handbook

Changed

e The error codes returned from FSGConnectINI::Initialize() and

FSGCoreINI::Initialize() have been changed. This is a breaking change for
any code that relies on handling the return codes from those functions.
e Bumped the SenseGlove libraries to the v2.200.0-0cb715de release with BLE

(Bluetooth Low Energy) support.

Removed

e Dropped support for Unreal Engine 5.2 and Epic Native Toolchain v21

(previously used for building UE 5.2 Linux dependencies), as they were already
deprecated in the v2.4.x release series.

Documentation

e Revamped SenseCom documentation in order to divide the SenseCom
instructions section into Bluetooth Low Energy instructions for SenseCom and
Bluetooth Serial instructions for SenseCom sections.

Added Bluetooth Low Energy instructions for SenseCom.

Added Bluetooth Serial instructions for Android.

Added SGBLE and SGBLExx Rust Dependency Licenses.

Bumped the mdbook-epub crate to
cac03b7f4b151f106f7f05b13da4c33fc098dd2c .

List the third-party tutorials inside the Extra Resources section in a categorized
manner.

Improved changelog formatting.

Additional minor fixes and improvements that may not be listed here.

[2.4.2] - 2025-02-17

This is a patch release to address minor issues in the SenseGlove Unreal Engine
Handbook, with no modifications to the plugin code.

385/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-low-energy
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/sensecom/bluetooth-serial/android.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/sgble-sgblexx-rust-dependencies.html
https://github.com/Michael-F-Bryan/mdbook-epub
https://github.com/Michael-F-Bryan/mdbook-epub/commit/cac03b7f4b151f106f7f05b13da4c33fc098dd2c
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/extra-resources.html#third-party-tutorials

The SenseGlove Unreal Engine Handbook

Documentation

e List the third-party tutorials with a description in their corresponding parent
sections.
e Additional minor fixes and improvements that may not be listed here.

[2.4.1] - 2025-02-14

This is a patch release to address minor issues in the SenseGlove Unreal Engine
Handbook, with no modifications to the plugin code.

Documentation

e Fix a bug that breaks the custom CSS styles on the Handbook's release URLs
(e.g. https://unreal.docs.senseglove.com/2.4/) by reverting an unintentional
change from the v2.4.0.

e Applied a minor Handbook Makefile fix.

e Additional minor fixes and improvements that may not be listed here.

[2.4.0] - 2025-02-14

This minor release brings various improvements and, notably, the first version to
add support for VIVE standalone mode with ViveOpenXR compatibility.

Added

e Added the ePub version of the SenseGlove Unreal Engine Handbook.

e Added FSGConnectINI::Initialize() and FSGCoredNI::Initialize() return
codes to Android logs for detailed debugging purposes through adb logcat .

e Introduced compatibility with the VviveOpenXR plugin.

386 /461

The SenseGlove Unreal Engine Handbook

Added the FsGPluginutils utility class for other plugins or modules availability
detection such as Meta XR and ViveOpenXR.

Added various HTC HMDs auto-detection support on Android.

Added support for HTC VIVE Focus Vision HMD auto-detection.

Added support for HTC Vive Wrist Trackers support on Android using the
official viveopenxrR plugin's OpenXR positional tracking provider
OpenXRViveWristTracker .

Added enum ESGOpenXRPositionalTrackingProvider .

Added the OpenXRPositionalTrackingProvider option to the plugin's wrist-
tracker settings to either manually set the positional tracking provider or auto-
detect it based on a combination of tracker hardware settings, targeted
platform, available OpenXR plugins, or the auto-detected HMD hardware.

Fixed

Fix a critical issue where HandStates->GetTransform(KeyPoint) was incorrectly
resolving to (&HandStates[0])->GetTransform(KeyPoint) , causing both hands to
use the left hand's wrist transform under specific conditions. This occurred
when the bFallbackToHandTrackingIfNoGloveDetected option was enabled, two
gloves were present, and no hardware wrist-tracking device was active,
resulting in both hands overlapping at the same transform.

FSGArrayUtils optimizations that affect the plugin performance as a whole.
Additional minor fixes and improvements that may not be listed here.

Changed

Now the motion sources for the wrist-tracking hardware or hand-tracking are
queried and populated dynamically rather than relying on the hardcoded
EControllerHand enum. This allows the SenseGlove Unreal Engine Plugin to
integrate better into other plugins such as VviveOpenxR, which when enabled,
provides many more options as the motion source for their various wrist-
tracking hardware.

FSGWristTrackingSettings::LeftHandMotionSource and
FSGWristTrackingSettings: :RightHandMotionSource types have changed from

387 /461

The SenseGlove Unreal Engine Handbook

EControllerHand tO FName .

e Bumped the SenseGlove libraries to v2.105.3-97eal8chb .

e Bumped the SenseGlove Unreal Engine Marketplace Packager ve.5.0-7df1183.

e Bumped the copyright years.

e This is the last release to support Unreal Engine 5.2.From v2.5.x onwards
only UE 5.3 and newer will be supported.

e The ESGViveHMDDetectionPriority enum items have changed and are no longer
backward-compatible.

Deprecated

e This is the last minor release to support Unreal Engine 5.2 and its support will
be removed from the next minor or major releases.

Documentation

e Reintroduced the Handbook in ePub format.

e Revamped the Enabling XR_EXT_hand_tracking OpenXR Extension on VR
Headsets and Deploying to Android (Standalone) documentation, and added
the ViveOpenXR -compatibile instructions as well.

e Significantly improved the Setting Up the Wrist Tracking Hardware section by
providing more detailed documentation and example configuration per HMD
and wrist tracking hardware.

e Clarified how to set up the VIVE Wrist Trackers in various configurations.

e Added HTC VIVE specific optimization tips for running in standalone mode.

e Fixed a few broken URLs caused by bad markdown formatting.

o Applied various Handbook Makefile fixes.

e (Clarified the HTC VIVE standalone support status in the platform support
matrix.

e Bumped the mdbook-alerts crate to ve.7.x.

e Reintroduced mdbook-epub at d1536bbbdc1ca00320522ad73a967e15057ef573
from the master branch as the blocking issues in #115 have been address in

1ca2a860f6ed405c00914a3aadd8057d5050b29b .

388 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/setup-wrist-tracking-hardware/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/plugin-configuration/plugin-settings/tracking/wrist-tracking/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/optimize-higher-fps/#htc-vive-specific-optimizations-in-standalone-mode
https://github.com/lambdalisue/rs-mdbook-alerts
https://github.com/Michael-F-Bryan/mdbook-epub
https://github.com/Michael-F-Bryan/mdbook-epub/commit/d1536bbbdc1ca00320522ad73a967e15057ef573
https://github.com/Michael-F-Bryan/mdbook-epub/tree/master
https://github.com/Michael-F-Bryan/mdbook-epub/issues/115
https://github.com/Michael-F-Bryan/mdbook-epub/commit/1ca2a860f6ed405c00914a3aadd8057d5050b29b#diff-b21e2a96624fabac44d6c5ecc34bff0835565999be6a320fe75bd0401d5c8e87R148

The SenseGlove Unreal Engine Handbook

e Added third-party tutorials to the following sections: Enabling

XR_EXT_hand_tracking on VR Headsets, Deploying to Android (Standalone), and
OpenXR.

e Additional minor fixes and improvements that may not be listed here.
e List the VRExpansionPlugin demo in the Extra Resources section.

[2.3.2] - 2025-01-28

This patch release addresses a critical issue backported from the upcoming 2.4.x
releaseto 2.3.x.

Fixed

e Fix a critical issue backported from the upcoming 2.4.x release where
HandStates->GetTransform(KeyPoint) was incorrectly resolving to
(&HandStates[0])->GetTransform(KeyPoint) , causing both hands to use the left

hand's wrist transform under specific conditions. This occurred when the
bFallbackToHandTrackingIfNoGloveDetected option was enabled, two gloves

were present, and no hardware wrist-tracking device was active, resulting in
both hands overlapping at the same transform.

[2.3.1] - 2024-11-27

This patch release addresses a few issues with SenseGlove Sockets Editor.

Fixed

e Additional minor fixes and improvements that may not be listed here.

389/461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/getting-started/enabling-xr-ext-hand-tracking-vr-headsets/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/misc/android-standalone-deployment/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-tutorials/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/extra-resources.html

The SenseGlove Unreal Engine Handbook

Changed

e The SenseGlove Sockets Editor now calculates hand bone reference transforms
using the current virtual hand mesh being edited, rather than the reference
mesh, when adding SenseGlove sockets.

[2.3.0] - 2024-11-13

This minor release includes some improvements and adds official Unreal Engine
5.5 Fab support.

Added

e Added USGAndroidPermissions to the SenseGloveAndroid module, enhancing
the plugin's permission request process on Android. Now, a pop-up prompts
the user to grant permissions, preventing silent crashes when permissions
haven't been granted beforehand.

e Added Unreal Engine 5.5 Fab support.

Fixed

e Fix UE 5.5 deprecation warnings inside USGVirtualHandComponent .
e Additional minor fixes and improvements that may not be listed here.

[2.2.2] - 2024-11-08

This patch release addresses a few issues with both glove and hand-tracking.

390 /461

The SenseGlove Unreal Engine Handbook

Fixed

e Fixed a chain of critical bugs that gets triggered due to
GloveConnectivityCheckInterval getting passed as seconds to the engine
rather than milliseconds. Thus, the default or any large value for
GloveConnectivityCheckInterval causes noticeable long delays between glove-

connectivity-check intervals and consequently renders the hand-tracking state
invalid in certain situations when the
bFallbackToHandTrackingIfNoGloveDetected Option is false.

[2.2.1] - 2024-10-23

This patch release focuses exclusively on updates to the documentation.

Documentation

e Updated all URLs, screenshots, and tutorials to reflect the transition from the
Unreal Engine Marketplace to Fab, Epic's new unified content marketplace.

e Revised documentation now points to the new home of the SenseGlove Unreal
Engine Plugin on Fab, ensuring users have access to the latest resources and
information.

[2.2.0] - 2024-10-22

This is a minor release with some breaking APl and ABI changes, focusing mainly on
migrating away from the deprecated FXRMotionControllerData in favor of
FXRMotionControllerState and FXRHandTrackingState on Unreal Engine 5.5+.

Added

e Completed support for the upcoming Unreal Engine 5.5 release.

391/461

The SenseGlove Unreal Engine Handbook

e Added usGVirtualHandComponent: :GetMotionControllerState() and the
equivalent Blueprint
function UvirtualHandComponentKismetLibrary: :GetMotionControllerState on UE
5.5+,

e Added USGVirtualHandComponent::GetHandTrackingState() and the equivalent
Blueprint function uvdirtualHandComponentKismetLibrary::GetHandTrackingState
on UE 5.5+.

e Added usGWristTrackerComponent::GetMotionControllerState() and the
equivalent Blueprint function
UWristTrackerComponentKismetLibrary: :GetMotionControllerState on UE 5.5+.

e Added usGWristTrackerComponent::GetHandTrackingState() and the equivalent
Blueprint function
UWristTrackerComponentKismetLibrary: :GetHandTrackingState on UE 5.5+.

e Added a variant of FSGDebugVirtualHand::Draw() and the equivalent Blueprint
function USGDebugVirtualHandKismetLibrary: :Draw_FXRHandTrackingState()
which accept FXRHandTrackingState on UE 5.5+.

e Added the new member bTracked to the FSGXRHandState struct.

e Added FSGXRTracker::GetMotionControllerState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary::GetMotionControllerState() .

e Added FSGXRTracker::GetHandTrackingState() and the equivalent Blueprint
function USGXRTrackerKismetLibrary: :GetHandTrackingState() .

Fixed

e Additional minor fixes and improvements that may not be listed here.

Changed

e Replaced all internal usages of the FXRMotionControllerData struct with either
FXRMotionControllerState or FXRHandTrackingState on UE 5.5+,

e Deprecated USGVirtualHandComponent::GetMotionControllerData() on UE 5.5+.

e Deprecated uSGWristTrackerComponent::GetMotionControllerData() on UE
5.5+.

392 /461

The SenseGlove Unreal Engine Handbook

e Deprecated the variant of FsGDebugVirtualHand::Draw() which accepts
FXRMotionControllerData as a parameter on UE 5.5+.

e Renamed USGDebugVirtualHandKismetLibrary::Draw tO
USGDebugVirtualHandKismetLibrary: :Draw_FXRMotionControllerData for more
clarification.

e Renamed an FSGXRHandState member from bReceivedJointPoses tO
bHasReceivedJointPoses .

e Changed the FSGXRTracker::GetAllKeypointStates() signature on UE 5.5+ to
match the IHandTracker interface APIchanges.

e The animation system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

e The wrist tracking system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState instead of FXRMotionControllerData .

e The hand interaction manipulation on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

e The virtual hand debugging system on UE 5.5+ has been revamped to utilize
FXRHandTrackingState .

Documentation

e Added the documentation on consuming the FXRHandTrackingState structin
both Blueprint and C++.
e Updated the documentation on consuming the FXRMotionControllerData

struct.
e Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.4] - 2024-10-22

This is a bugfix release that delivers some documentation fixes.

393/461

The SenseGlove Unreal Engine Handbook

Documentation

e Updated the documentation on consuming the FXRMotionControllerData
struct.

e Additional minor documentation fixes and improvements that may not be
listed here.

[2.1.3] - 2024-10-11

This bugfix release centers on adding initial support for the upcoming Unreal Engine
5.5,

Added

e Added initial support for the upcoming Unreal Engine 5.5 release. Please note
that, while the plugin is functional, a few adjustments are still required to
address deprecation warnings. Specifically, the FXRMotionControllerData struct
needs to be replaced with the newly introduced FXRMotionControllerState and
FXRHandTrackingState structs, along with adjustments to adhere to the new
hand-tracking APl changes.

e Added support for Epic Native Toolchain v23.

Fixed

e Fix a buginside usGVirtualHandComponent::PostEditChangeProperty() Where the

get member name check happens against the wrong class and member names.
e Additional minor fixes and improvements that may not be listed here.

Changed

e The SenseGlove libraries have been updated to v2.105.0-02a2e5608 .

394 /461

The SenseGlove Unreal Engine Handbook

[2.1.2] - 2024-09-02

This is a bugfix release that addresses a few non-critical issues and documentation
fixes.

Fixed

e Fix a bug where the hands are always visible even when
bVisibleWhenHandDataUnavailable is disabled.

e Fixa bugwhere the HandvisibilityChangedEvent eventis not triggered on the
virtual hand component visibility changes.

e Fix the wrong script name for USGHMDTrackerKismetLibrary .

e Fix the wrong script name for USGXRTrackerKismetLibrary

e FiX LogPython: Warning: 'SGHMDTrackerKismetLibrary' and
'SGXRTrackerKismetLibrary' have the same name
(SenseGloveHeadMountDisplayKismetLibrary) when exposed to Python. Rename
one of them using 'ScriptName' meta-data when packaging the game.

e Fix the non-existent default hand-mesh warnings polluting the logs when
packaging the game.

e Expanded the clickable area on the handbook index page revision buttons.

e Minor documentation fixes.

[2.1.1] - 2024-08-18

This is a bugfix release with no actual plugin code changes, mostly addressing issues
in the documentation and third-party dependencies caused by source control merge
conflicts.

Fixed

e Fix the messed up changelog file caused by cherry-picking merge conflicts
between the dev branch and the master branch.

395/461

The SenseGlove Unreal Engine Handbook

e Fix a bug that causes a handbook revision mismatch when deploying the
handbook from the dev branch.

e Fix a bug where sG_GIT_IS_SHALLOW_CLONE while building the handbook is always
setto yes even ifit's not a shadow clone because SG_DOT_GIT_SHALLOW_FILE
evaluates to an empty string when the .git/shallow file does not exist.

e Fix some documentation typos.

Removed

e Removed Android NDK r25 armv7 and x86 dependencies brought back by
mistake while merging v2.1.0 from the dev branch to the master branch.

[2.1.0] - 2024-08-16

This is a minor release focusing mainly on bringing OpenXR-compatible hand
tracking support (XR_EXT_hand_tracking) and Head-mounted Display automatic
detection for adjusting wrist tracker offsets automatically at runtime.

Added

e Added SenseGloveTracking and module which provides OpenXR-compatible
hand tracking by implementing XR_EXT_hand_tracking support, HMD auto-
detection, and SenseGlove device tracking.

e Added UsenseGloveTrackingKismet module in order to expose part of the
SenseGloveTracking functionality to Blueprint.

e Added FsGxRTracker, the underlying main class that implements the OpenXR
compatibility.

e Added USGXRTrackerKismetLibrary in order to allow Blueprint to retrieve the
FXRMotionControllerData directly from our tracking module.

e Added the sGTrackingTypes header to the SenseGloveTypes module in order to
define and share SenseGloveTracking module types through this header across
the plugin modules.

396 /461

The SenseGlove Unreal Engine Handbook

o Afallback to HMD and wrist tracker hardware auto-detection mechanism has
been added to be triggered in situations when automatic detection of the wrist
tracker hardware is desired, e.g., either by not setting it explicitly, or setting it to
the default None value. Please note that this is still highly experimental and HTC
VIVE Focus 3 and HTC XR Elite cannot be distinguished in the current iteration.
Though, since the tracker devices and offsets for both headsets are the same in
the end it does not make a difference if both headsets are detected as each
other.

e Added ESGHeadMountedDisplayDevice enum with supported HMDs list.

e Added ESGViveHMDDetectionPriority enum in order to choose which headset
we attempt to detect between VIVE Focus 3 and VIVE XR Elite as we cannot
distinguish them, yet.

e Added the FsGHMDTracker utility class, in order to easily gather information
about the HMD device at runtime.

e Added USGHMDTrackerKismetLibrary which exposes the equivalent C++ HMD
auto-detection functionality to Blueprint.

e Added FSGHMDTrackingSettings config struct.

e Added the FsGGloveTracer utility class, in order to easily check the left or right
glove connectivity or retrieve the connected glove instances.

e Added UsGGloveTrackerKismetLibrary which exposes the equivalent C++
functionality to Blueprint.

e Added FsGGloveTrackingSettings config struct.

e Added FsGTrackingSettings config struct.

e Added FSGHandTrackingSettings config struct.

e Added FsSGWristTrackingDebuggingSettings config struct.

e Added FsGVvirtualHandSettings config struct.

e Added FsGVirtualHandAnimationSettings config struct.

e Added FsGVirtualHandDebuggingSettings config struct.

e Added FsSGVirtualHandGrabSettings config struct.

e Added FsGVirtualHandHapticsSettings config struct.

e Added FsGVirtualHandMeshSettings config struct.

e Added FsGVirtualHandPhalangesLengthSettings config struct.

e Added FsSGVirtualHandTouchSettings config struct.

e Added USGVirtualHandComponent::0OnHandVisibilityChanged() eventin order to
notify other components/actors whenever the virtual hand mesh appears or

397 /461

The SenseGlove Unreal Engine Handbook

disappears (for example, this could happen when a glove is
connected/disconnected).

GetMotionControllerData() has been introduced to the
USGVitualHandComponent in order to retrieve the OpenXR-compatible glove data
in Unreal's FXRMotionControllerData format.

Added FsGVirtualHandAnimInstanceProxy::GetMotionControllerData() and
many more accessor methods usable only by child classes to allow
consumption of the data required for manipulating the virtual hand mesh

animations.

GetMotionControllerData() has been introduced to the
USGWristTrackerComponent in order to retrieve the OpenXR-compatible glove
data in Unreal's FXRMotionControllerData format.

Added usGGrabComponent::SimulatePhysics() method.

Added FSGDebugCube .

Added FSGDebugCubeSettings .

Added the senseGloveDebugkismet module in order to allow drawing of
debugging, cubes, gizmos, and virtual hands from Blueprint.

Added usGDebugCubeKismetLibrary in order to expose the FSGDebugCube
functionalities to Blueprint.

Added USGDebugGizmoKismetLibrary in order to expose the FSGDebugGizmo
functionalities to Blueprint.

Added usGDebugVirtualHandKismetLibrary in order to expose the
FSGDebugVirtualHand functionalities to Blueprint.

Added a new static braw() method overload to DebugGizmo which allows
passing an FQuat instead of a FRotator .

Introduced a new FXRMotionControllerData compatible hand animation system
with the ability to take the mesh bone's transforms into account for a more
reliable hand animation.

Introduced a new FXRMotionControllerData compatible wrist tracking system.
Introduced a new FxRMotionControllerData compatible hand interaction
manipulation system.

Added the ability to fallback to hand tracking when a glove is not present and
use the bare hands for interactions, or a combination of glove and hand
tracking if no motion controller input is detected.

Added the SenseGlove grab/touch sockets one-click-setup ability on any Epic-
compliant virtual hand mesh from within the Unreal Editor's Content Browser,

398/461

The SenseGlove Unreal Engine Handbook

Skeleton Editor, or Skeletal Mesh Editor by extending the Unreal Editor.

o Added FsGAssetUtils editor-only class.

e Added FsGContentBrowserExtension editor-only class.

e Added FsGPluginStyle editor-only class.

e Added FsGSocketsEdito r editor-only class.

e Added FsGSocketsEditorCommands editor-only class.

e Added the FsGInitializationSettings config structin order to control how the
plugin is initialized.

e Introduced the FSGGameUserSettings for managing the Engine Scalability
Settings through the SenseGlove plugin in order to change the graphics
settings on the fly.

e Added UsGGameUserSettingsKismetLibrary in order to allow all the Engine
Scalability Settings to be managed from the Blueprint side.

o Added FsGGameUserSettingsSettings config struct.

e Added the SenseGlove console commands:

SG_GetEngineScalabilitySettings() and
SG_SetEngineScalabilitySettings(Scalability) .

o Added sGHardwareBenchmarkingSettings config struct.

e Introduced ESGEngineScalabilitySettings enum.

o Added FsGVirtualHandSettingsOverrides config struct used by the new settings
override system.

e Added sGWristTrackingSettingsOverrides config structured by the new
settings override system.

e Added support for Android APl level 32 in addition to the APl level 29.

¢ Introduced the SenseGlove Unreal Engine Handbook as an attempt at
documenting the SenseGlove Unreal Engine Plugin.

e Merged the pack utility branch to the plugin's source code at /packager which
adds the SenseGlove Unreal Engine Marketplace Packager vo.4.0-a65bb20
binaries and configurations.

Fixed

e Fixed a bug when the virtual hand inside the game is not visible but still collides
with other objects inside the scene, mistakenly triggering events like
OnGrabStateUpdated and OnTouchStateUpdated .

399 /461

The SenseGlove Unreal Engine Handbook

e Fixed a bug where UsGGrabComponent 'S bAffectPhysicsState does not enables
physics on its owning actor at BeginPlay() .

e Fixed various wrong Kismet script names and their class exports.

e Fixed the display name for various overloads of the Blueprint-exposed function
Queue Command Vibro Level to expose sensible display names.

e Some Android UPL tweaks, permission, and build fixes.

e Many other large and small fixes and improvements that might not be listed
here.

o Afew small bugfixes that have already been backported to the v2.0.x series.

Changed

e Now, if bvalidateIfDefaultClassesAreSGCompliant option from
FSGInitializationSettings is enabled (default) the SenseGlove plugin checks

for default SenseGlove-compliant GameMode, GameInstance, etc, at module
initialization and tries to set to default, native SenseGlove classes, if any of
those default classes are not a SenseGlove or a SenseGlove-derived class.

e The usGsettings has been fully revamped with more customizations added and
categorized in a different manner adding many new structs and removing
some, in order to have fine-grained control over the various aspects and
functionality of the plugin components.

e The usGSettings constructor visibility has been changed from public to private.

e The Settings override system has been overhauled as well affecting how we
override settings from the USGVirtualHandComponent and
USGWristTrackerComponent .

e The SenseGlove libraries have been updated to v2.104.1-55fddbd2 .

® GetHandPose() has been replaced by GetMotionControllerData() inside
USGVirtualHandComponent (see the relevant entry in the Added and Removed
sections).

e Many functions inside USGVirtualHandComponent for retrieving bone names or
reference transforms has been renamed to return different data types; e.g.
GetLeftHandFingerBoneNames() , GetRightHandFingerBoneNames() ,
GetLeftHandFingerBoneName(),and GetRightHandFingerBoneName () renamed to
GetLeftHandBoneNames () , GetRightHandBoneNames() , GetLeftHandBoneName() ,
and GetRightHandBoneName() respectively.

400/ 461

The SenseGlove Unreal Engine Handbook

bHiddenInGameIfNoGloveDetected uproperty from USGVirtualHandComponent has
been renamed to bvisibleWhenHandDataUnavailable and accordingly all of its
getters and setters; bvisibleWhenHandDataUnavailable = false Nnow acts as
bHiddenInGameIfNoGloveDetected = true, and vice-versa.
USGWristTrackerComponent NOW uses FXRMotionControllerData for wrist
tracking instead of calculating the wrist location by calling the SenseGlove API.
FSGVirtualHandAnimInstanceProxy NOw relies on FXRMotionControllerData to
animate the hands instead of a TMap of bone names and rotations which allows
it to also apply the bone locations.

The new OpenXR animation system now takes into account the mesh bone's
transforms for a more reliable hand animation.

FSGDebugVirtualHand: :Draw() NOW accepts a FXRMotionControllerData
parameter instead of all wristLocation, WristRotation, JointPositions, and
JointRotations parameters.

FSGDebugVirtualHandSettings has been renamed to
FSGV1irtualHandDebuggingSettings .

The value for usGGrabComponent 'S AttachmentSocketName uproperty now
defaults to the value of the plugin's GrabAttachPointSocketName instead of
Name_NONE .

The SGGrabComponent now enables bGravityEnabled, bSimulatePhysics, and
calls wakeRigidBody oOn its owning actor at BeginPlay() if bAffectPhysicsState
is enabled.

Updated the Directory Structure section of the main README file to reflect the
latest toolchain support status.

The /CHANGELOG.md file has been migrated to
/Handbook/src/overview/changelog.md

The /LICENSE.md file has been migrated to /Handbook/src/license/senseglove-
unreal-engine-plugin.md

The /LICENSE-THIRD-PARTY.md file has been migrated to
/Handbook/src/license/third-party.md and every third-party component's
license has been split; adding /Handbook/src/license/senseglove-sdk.md for the
SenseGlove SDK, /Handbook/src/license/boost-cpp-libraries.md for the Boost
C++ Libraries, and /Handbook/src/license/serial-communication-library.md for
the Serial Communication Library.

The Platform Support Matrix section of the main README file has been
migrated to /Handbook/src/overview/platform-support-matrix.md .

401/ 461

The SenseGlove Unreal Engine Handbook

e The Planned Features Completion Status section of the main README file has
been migrated to /Handbook/src/overview/planned-features—completion-
status.md .

e The Directory Structure section of the main README file has been migrated to
/Handbook/src/overview/directory-structure.md .

e The SenseGlove settings' main config struct is now marked as DefaultConfig
which means it does not require to be saved when settings are changed and
they take effect immediately as the user updates them.

e Replaced all bitfield uproperties with booleans.

e Changed the DocsURL from the old Blueprint docs website to the new
SenseGlove Unreal Engine Handbook website.

e The Blueprint signature for various overloads of the Blueprint-exposed function
Queue Command Vibro Level has been changed to expose sensible display
names.

Removed

e Dropped support for Unreal Engine 5.1 and Epic Native Toolchain v2e (used
to build UE 5.0 and 5.1 Linux dependencies).

e Removed the Allbreaker virtual hand model as it's no longer compatible with
the SenseGlove plugin.

e Removed AsGVvirtualHandActor as it was experimental and we no longer
maintain it and haven't been doing so for a long time.

e Removed FSGVirtualHandAnimInstanceProxy: :GetBonesRotations() .

e Removed USGVirtualHandComponent::GetHandPose() and it's no longer possible
to get the hand pose data from USGVvirtualHandComponent as GetHandPose() has
been removed. If you need it, you could always use the SenseGlove low-level API
to retrieve it from the glove.

e Removed also GetFingerBoneName() , GetFingerBoneRefTransform(),
GetFingerBoneRefRotation() and GetFingerBoneRefRotation() from
USGV1irtualHandComponent .

e Removed some remnants of UE 5.1 and older releases from the C++ code.

e Removed the pack utility branch and merge it to the plugin's source code at
/Packager .

402/ 461

https://senseglove.gitlab.io/unreal-blueprint-docs/
https://unreal.docs.senseglove.com/
https://unreal.docs.senseglove.com/

The SenseGlove Unreal Engine Handbook

Known Issues

e With the new OpenXR release, the separation of the real and virtual hand
rendering is broken. The reason is the animation system now uses the OpenXR
data in the world transforms which yields better animations, but comes at the
cost of overriding the the hand position set by the wrist tracker component's
position and rotation. If FXRMotionControllerData is invalid and
bVisibleWhenHandDataUnavailable is enabled for example, the system works as
expected, since the animation system won't proceed to animate the hand
meshes without valid FXRMotionControllerData . Since the animation system is
only aware of the hand mesh it's animating versus the real hand and virtual
hand meshes it means either it should become aware of the physics events like
begin and end overlap events and also the real vs virtual hands, or it should
resort back to animating the virtual hand meshes in local or component space.
This release marks this feature as broken for now until we come up with a
reasonable solution in the future.

e The UXRDeviceVisualizationComponent provided by Unreal Engine is used in the
SGPawn class as ControllerVisualizerLeft and ControllerVisualizerRight for
implementing the wrist tracking hardware visualization feature. However, it is
not compatible with the new OpenXR system in certain scenarios. For instance,
when the motion controllers serve as wrist tracking hardware since the
SenseGlove plugin is now introduced to the engine as an OpenXRHandTracking
system, it causes the UXRDeviceVisualizationComponent to visualize the wrist
tracking hardware at coordinates (0.0f, 0.0f, 0.0f) instead of their actual
location and rotation in the world. This happens because the component
incorrectly registers them as inactive, possibly because it's assumed hand
tracking and motion controllers cannot be in use at the same time. Currently,
we use this feature solely for debugging, and we have an alternative in the form
of wrist-tracking debug gizmos, which can be toggled on or off via the settings
system. In future releases, we might remove this feature due to its
incompatibility, unless we find a solution to make the
UXRDeviceVisualizationComponent work with the new system. Alternatively, we
may develop our own version of the UXRDeviceVisualizationComponent .

o Although the SenseGlove OpenXR implementation is fully compatible with the
IOpenXRHMD interface and the FOpenXRHMD XRTrackingSystem, it is not
compatible with the FoculusXxrRHMD backend provided by the Meta XR plugin. The

403 /461

The SenseGlove Unreal Engine Handbook

same issue likely applies to the VIVE OpenXR plugin. So, if these plugins are
enabled in your project, the SenseGlove OpenXR will not function as intended,
effectively breaking the plugin's functionality. It seems these plugins are
necessary in order to make the fallback to the hand-tracking feature work on
Android. While we may add support and compatibility with Meta XR and VIVE
OpenXR plugins in the future, for the time being, if your project requires these
plugins, we advise continuing with the v2.0.x release of the SenseGlove Unreal
Engine plugin until this issue is addressed.

[2.0.8] - 2024-07-15

This is a bugfix release that contains a somewhat important bugfix backported from
the next release of the plugin as documented below.

Fixed

e Fix a bug where the sGpawn right-hand grab colliders' default size is mistakenly
set to the default value for the left-hand grab colliders at CDO initialization time.

[2.0.7] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only fixing issues with
binary assets incompatible with UE versions earlier than 5.4.

Fixed

e Make the Allbreaker assets compatible with UE5.1+ again as the v2.0.5 update
breaks compatibility with UE versions earlier than 5.4, thus leaving the engine
unable to load those assets.

404 / 461

The SenseGlove Unreal Engine Handbook

[2.0.6] - 2024-05-29

This is a bugfix release with no actual plugin code changes, only removing
development/test assets from UE 5.3 that were never meant to be shipped.

Removed

e Removed the dev/test virtual hand models that leaked into the 5.3 branch.

Fixed

[2.0.5] - 2024-05-22

This is a bugfix release with no actual plugin code changes, only focusing on fixing
the Allbreaker virtual hand model issues.

Fixed

e Fix the wrong palm bone names on the Allbreaker virtual hand models.

[2.0.4] - 2024-05-17

This is a bugfix release with no actual plugin's code change.

Fixed

e Fix our in-house Unreal Engine Marketplace submission tool's configurations
where the Content folder (containing the Allbreaker hand model) is mistakenly

405/ 461

The SenseGlove Unreal Engine Handbook

ignored during the submission. This release reintroduces the Virtual Hand
Model and its material missing from the previous release.

e Fixthe senseGlove.uproject's wrong versioning submitted to the Unreal Engine
Marketplace.

[2.0.3] - 2024-05-15

This is a bugfix release addressing mostly RunUAT build issues on Unreal Engine
5.4.

Fixed

e Fix UE 5.4 RunUAT build issue: "Asking CopCompileEnvironment for a single
Architecture, but it has multiple Architectures (armeé4, x64)", affecting
SenseGloveConnectImpl and SenseGloveCoreImpl modues.

e Improved target platform detection when building SenseGloveConnectImpl and
SenseGloveCoreImpl modules and also distinguishing the x64 builds from
armé4 on Microsoft Windows.

e Fix other UE 5.4 RunUAT build issues, mostly caused by missing headers.

Removed

e Removed support for Android armeabi-v7a and x86 architectures as they are
no longer supported by the supported engine versions.

[2.0.2] - 2024-04-25

This is a patch release with no code changes.

406 / 461

The SenseGlove Unreal Engine Handbook

Added

e Introduce official Unreal Engine 5.4 support to the Unreal Engine Marketplace.

Changed

e Updated the Platform Support Matrix with the latest changes. This is the last
release to support Unreal Engine 5.1 as we no longer are able to push
updates for this release to the Unreal Engine Marketplace. The v2.0.1 release
for Unreal Engine 5.1 can be obtained from the Unreal Engine Marketplace,
and v2.0.2 through our Microsoft Azure DevOps repositories. Please note that
there are no actual code changes between these two releases and in terms of
functionality they are almost identical.

[2.0.1] - 2024-04-15

This is a bugfix release.

Fixed

e Fixabuginside both sGvirtualHandComponent and SGWristTrackerComponent
where the connected glove's UObject instance gets destroyed and re-
instantiated every frame. With this fix now the glove instance will be created or
destroyed only when a glove connects to or disconnects from the system.

e Update the outdated Platform Support Matrix and its remarks section to reflect

the latest status information.
e Fix the wrong header file description sections for the header files inside

SenseGloveKismet/Public/SGKismet/ .

Changed

e SenseGlove libraries have been updated to v2.102.0-35d4de3f .

407 / 461

The SenseGlove Unreal Engine Handbook

e Together, SenseGlove libraries v2.102.0-35d4de3f and SenseCom v1.6.1
remove the need to call ResetCalibration every time and are able to store and
load calibration profiles from disk.

e SesenGloveBackend module is no longer calling
FSGHandLayer: :ResetCalibration() on every backend initialization.

[2.0.0] - 2024-03-22

This is the second major release of the SenseGlove Unreal Engine Plugin adding
support for Nova 2 with enormous breaking changes to the current C++ and
Blueprint APIs.

Added

e Added support for the SenseGlove Nova 2 devices.

e Added support for Quest 3 controllers.

e Various classes have been added to the APl in order to implement the new
functionalities and features from the latest upstream SenseGlove libraries.

e Added initial support for the upcoming Unreal Engine 5.4 release.

e Added a pair of default production-ready virtual hand meshes for the left and
right hands, courtesy of Allbreaker LLC Columbia. For usage and redistribution,
please consult the LICENSE-THIRD-PARTY.md file.

Fixed

o Afew critical bug fixes that have already been backported to the vi.x.x series
through v1.9.3 to v1.9.8 releases.

e Revamped the way we do FVector <-> SGVect3D, FQuat <-> SGQuat, and
SenseGlove <-> Unreal Engine angles conversions in order to properly translate
between the SenseGlove and Unreal Engine coordinate systems.

o Allow the C++ compiler the opportunity to perform RVO/NRVO if applicable.
e Fixthe modules' order inside the .uplugin file.

408 /461

https://www.allbreaker.co/
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/appendix/LICENSE-THIRD-PARTY.html

The SenseGlove Unreal Engine Handbook

e Fix a build issue inside FSGArrayUtils::FromStdVector () introduced by newer
MVSC updates due to stricter implicit uinté4 to int32 conversions.

e Fix a build issues inside FSGArrayUtils when performing non-Unity builds due
to the missing <string> header.

e Fix other build issues in USGDevice, USGNovaGloveSensorData, FSGDeviceImpl,
and FsGSenseGloveVarsImpl when performing non-Unity builds due to the
missing relevant headers.

e Fix changelog formatting.

e Some other improverment and fixes.

Changed

e SenseGlove libraries have been updated to v2.101.12-62blbell.

e The SenseGlove Unreal Engine Plugin now declares the OpenXR plugin as a
dependency, so that the OpenXR plugin will be enabled automatically as soon
as the SenseGlove Unreal Engine Plugin gets enabled.

e Various classes and parts of the APl have been changed in order to reflect and
adhere to upstream SenseGlove libraries.

e Reverse the Platform Support Matrix order from newer Unreal Engine versions
to the older ones.

o Clarify the engine support policy in the main readme file by adding the
corresponding references from the Epic Marketplace Guidelines and a URL to
their guidelines page.

e The SGTouchComponent uproperties BuzzDuration and BuzzLevel now utilize
different different names in order to correspond to the underlying API changes.
They have been renamed to VvibrotactileDuration and vibrotactileLevel.

e The sGTouchComponent uproperties ForceFeedbackLevel and BuzzLevel (now
VibrotactileLevel) parameters type have changed from 4int32 to float with
the value range varying between o0.of to 1.ef instead of 1 to 100 in order to
correspond to the underlying APl changes.

e The sGvirtualHandComponent now assumes the default grab point's name as
GenericGrabPoint instead of GrabPoint as default if not specified in the Unreal
Blueprint Editor.

e The sGPawn on UE 5.2+ now utilizes UXRDeviceVisualizationComponent in order
to properly display the controller meshes shipped with Unreal Engine's OpenXR

409/ 461

The SenseGlove Unreal Engine Handbook

plugin, or a user-provided mesh. On UE 5.1 this could still be set on the
WristTrackerLeft and WristTrackerRight components. Please note that
despite the fact that on UE 5.2+ it's still possible to utilize the
WristTrackerLeft and WristTrackerRight for setting the controller meshes,
this has been deprecated in UE 5.2+ and is no longer supported.

Removed

e Various classes and parts of the APl have been removed in order to reflect and
adhere to upstream SenseGlove libraries.
e Removed the redundant sGIC_int32_Ref interop type.

[1.9.8] - 2024-03-12

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

Fixed

e Fix a bug where the right-hand mesh is always hidden inside the game no
matter whether the right glove is connected or not.

e Fixa crash inside the usGHandPose: :FromHandAngles() method.

e Some performance optimizations by utilizing MoveTemp in return statements.

e Some improvements applied to the source code.

e Some other minor fixes.

Changed

e The BonesRotations TMap is no longer a public field of
FSGVirtualHandAnimInstanceProxy and instead could be retrieved by calling the

GetBonesRotations() method.

410/ 461

The SenseGlove Unreal Engine Handbook

[1.9.7] - 2024-02-18

This is a bugfix release that contains bugfixes backported from the next major
release of the plugin as documented below.

Fixed

e Fix various bugs inside the SGPlayerController which occur when the thumb
and pinky fingers are simultaneously touching different SGTouchComponents, or
only one of them is in touch with such a component. In this case pinky's buzz
and force-feedback levels are determined from the sGTouchComponent thatis in

collision with the thumb instead of the one that is touched by the pinky. Or, the
pinky could ignore the buzz and force-feedback level if the thumb is not in
collision with an sGTouchComponent . Or, the pinky could have reacted with a buzz
or force feedback while only the thumb is in contact with an sGTouchComponent .
e Fixthe BuzzDuration uproperty range in order not to get clamped at 100.of
and also use float values for ClampMin and UIMin specifiers instead of integer

values.

[1.9.6] - 2024-02-14

This is a bugfix release.

Fixed

e Fix afew critical bugs inside the NovaGlove class where the higher levels of the
APl including constructors, Parse, and NewNovaGlove methods mistakenly
instantiate a SenseGloveImpl class instead of a NovaGloveImpl class.

411/ 461

The SenseGlove Unreal Engine Handbook

[1.9.5] - 2024-02-09

This is a bugfix release.

Fixed

e Fix a wrong type-casting inside SGDeviceModel::ParseFirmware() where
OutMainVersion and OutSubVersion arguments are getting passed to the lower
levels of the API. This could potentially result in a segfault at the FFl boundary
between lower and higher levels of the API.

[1.9.4] - 2024-02-08

This is a bugfix release addressing mostly Blueprint APl issues with ABI breaking
changes inside the Blueprint layer, backported from the next major release of the
plugin as documented below.

Fixed

e Fix the Blueprint Parse function signature for the NovaGloveInfoKismetLibrary
where the outGloveInfo passed by the caller was never actually assigned as it
was not getting passed by reference.

e Changelog formatting.

[1.9.3] - 2024-02-03

This is a hotfix release addressing a few critical issues that might result in crashes or
malfunctions for users of the low-level SenseGlove API, backported from the next
major release of the plugin as documented below.

412/ 461

The SenseGlove Unreal Engine Handbook

Fixed

e Fix a potential memory corruption inside one of the SGBasicHandModel
constructors where the StartPositions parameter gets passed as the
StartRotations parameter to lower levels of the API.

e Fix a potential memory corruption inside one of the sGSenseGloveInfo
constructors where the StartPositions parameter gets passed as the Functions
parameter to lower levels of the API.

¢ Fix a potential memory corruption where inside the
SGHapticGloveCalibrationSequence: :GetCurrentInstruction() method, the
return statement of the function is getting assigned to the const parameter
NextStepKey , thus the return statement of the function will always be empty as
well.

e Fix a potential memory corruption where inside one of the overloads of the
SGSenseGloveImpl::GetGlovePose() method, the out parameter of the method
is getting passed as the SensorData parameter to the lower levels of the API.

e Fix multiple Equals methods for a few classes such as SGInterpolationSet,
SGNovaGloveHandProfile, SGNovaGloveInfo, SGSenseGloveHandProfile,
SenseGloveInfo, SenseGlovePose, Where the Equal method compares the
current instance against itself instead of the other instance passed to as the
parameter to the method.

e Removed a redundant code statement inside the
SGNovaGloveImpl: :GetSubFirmwareVersion() method.

e Some minor const correctness fixes.

e Some other minor code fixes and improvements.

e Fix the wrong version numbers inside the paltform support matrix and the
main .uplugin file.

e Minor changelog fixes.

e Bumped the copyright years.

413 /461

The SenseGlove Unreal Engine Handbook

[1.9.2] - 2023-11-03

Added

e Added a list of planned features and their completion status to the main
README file.

Fixed

e Abugwhere the released actor is going to be NnuLL whenever the
OnActorReleased event fires.

[1.9.1] - 2023-10-11

Fixed

e Add the missing Unreal Engine C++ header to files that rely on the
ENGINE_x_VERSION macros in order to fix the Epic Store build failures on UE
5.3.

[1.9.0] - 2023-10-10

Changed

e The BlueprintImplementableEvent ufunction specifier for the
OnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch events have been changed to
BlueprintNativeEvent in order to allow them to be implemented from the child

414/ 461

The SenseGlove Unreal Engine Handbook

C++ classes as well. This won't break any existing Blueprint code that relies on
the previous BlueprintimplementableEvent signature.

Fixed

e Add a missing release note entry for the vi.8.0 release to the changelog file.

[1.8.0] - 2023-10-10

Added

e Introduced new SGPawn events: OnActorGrabbed, OnActorReleased,
OnActorBeginTouch, and OnActorEndTouch .

e Exposed oOnGrabStateUpdated, OnTouchStateUpdated, OnActorGrabbed,
OnActorReleased, OnActorBeginTouch, and OnActorEndTouch events to Blueprint
aS BlueprintImplementableEvent .

Fixed

e Fixa bug where the onTouchStateUpdated event is mistakenly triggered instead
of the onGrabstateUpdated when the right thumb fingertip grab collider

overlaps with a grabbable actor.
e Fixthe DECLARE_EVENT macro signature for onGrabStateUpdated and

OnTouchStateUpdated events.

415/ 461

The SenseGlove Unreal Engine Handbook

[1.7.0] - 2023-09-14

Added

e Introduce SGGameInstance, a customized SenseGlove game instance for future
use.

e Added the new SenseGloveBackend and SenseGloveBackendKismet modules.

e Added sG_cpp20 C++ macro for C++20 detection, which is now default from UE
5.3 onwards.

e Added SG_CAPTURE_THIS C++ macro as a workaround for error C4855: implicit
capture of 'this' via '[=]' dis deprecated in /std:c++20 in order to build the
same lambda captures without extra #ifdef s on all supported engine
versions.

Changed

e SenseGlove libraries have been updated to v2.12.0-19c9854 .
® SGCoreImpl/ SGPlatform has been moved to SGBuildHacks / SGPlatform.

Fixed

e Proper initialization of the SenseGlove backend in order to fix a bug in certain
situations where sGConnect::Init() gets called every frame.
e Some other minor fixes and improvements.

[1.6.1] - 2023-08-14

Fixed

e FixUnreal Engine 5.0 build issues.

416 / 461

The SenseGlove Unreal Engine Handbook

e Minor documentation fixes.

[1.6.0] - 2023-08-14

Added

e Added support for the upcoming Unreal Engine 5.3.

e Now, the hand's velocity is applied to grabbed actors after being released from
the hand.

e Introduce the real hands to the senseGlove module (SGPawn) API.

e Added separation of the virtual and real hand rendering.

Fixed

e Fix the wrong default debug virtual hand gizmo colors when initialized using the
default constructor.
e Some minor performance fixes and improvements.

Changed

e SenseGlove libraries have been updated to v2.11.0-b775a05 .

[1.5.3] - 2023-07-19

This is a hotfix release mostly addressing Android Bluetooth performance issues.

Fixed

e Minor changelog fixes.

417] 461

The SenseGlove Unreal Engine Handbook

Changed

e SenseGlove libraries have been updated to v2.160.1-3b0e7c9 .

[1.5.2] - 2023-07-19

This is a hotfix release mostly addressing Android-related issues.

Fixed

e Fix a build issue with Android shipping builds due to sgconnect.jar not getting
copied automatically in the AFSProject which is compiled for shipping builds
when AndroidFileServer (AFS) is enabled.

e Minor changelog fixes and some source code formatting fixes.

[1.5.1] - 2023-07-13

This is a hotfix release addressing a few critical issues introduced by the recent
changes.

Fixed

e Fix a wrist tracker bug where left and right hands' wrist trackers are mistakenly
tracking the opposite hand's motion source.
e Fix a bug where the right hand is not able to do grab or release.

418 /461

The SenseGlove Unreal Engine Handbook

[1.5.0] - 2023-06-16

This release breaks ABI/API compatibility with the previous versions in some areas as
documented below.

Added

e Added HTC VIVE Focus 3 positional tracking hardware enum.

e Added support for the Meta Quest Pro, HTC VIVE, and HTC VIVE Focus 3
positional tracking hardware.

o Added two options to the wrist tracker settings (to the global plugin settings
and the overrides in the wrist tracker component) in order to be able to specify
a custom motion source for the left and right hands, so that it allows SteamVR-
based trackers such as HTC VIVE or HTC VIVE Focus 3 to operate with the
SGPawn .

Fixed

e Fix a bug where SteamVR trackers such as HTC VIVE and HTC VIVE Focus 3's
wrist orientation and location were not being tracked.

Changed

e Fully refactored the top-level configurations in the settings system into
ustructs.

e SenseGlove libraries have been updated to v2.10.0-12133ac.

Removed

e Dropped support for the Epic Native Toolchain vig, MSVC vi41 (Visual Studio
2017), and thus Unreal Engine 4.27 as it has been marked as deprecated since
vi.4.x.

419/ 461

The SenseGlove Unreal Engine Handbook

e Removed any kind of support for Oculus Touch (Oculus Rift S and Oculus Quest
1) positional tracking hardware, thus the enum as well.
e Removed any kind of support for Pico Neo 2 positional tracking hardware, thus

the enum as well.
e Removed any kind of support for Pico Neo 3 positional tracking hardware, thus

the enum as well.

[1.4.3] - 2023-06-01

This is a hotfix release addressing a critical Android crash.

Fixed

e Fix a critical Android crash that happens where the default development hand
meshes are not found, which means almost always since we don't ship any
default virtual hand mesh at the moment.

e Minor changelog release formatting fix in order to stay consistent.

[1.4.2] - 2023-06-01

This is a hotfix release addressing a few critical issues.

Fixed

e Fix build issues with certain compilers when the Unreal Engine version is older
than 5.2.

e Reintroduced the Virtual Hand and the Wrist Tracker debug gizmos which have
temporarily been disabled due to a bug in the settings system.

e Some minor changelog fixes.

420/ 461

The SenseGlove Unreal Engine Handbook

[1.4.1] - 2023-05-29

This is a bugfix release with a focus on Android build issues.

Fixed

e Fix an Android Gradle build issue that happens when the game's package name
won't start with com.senseglove.*.

e Suppress a grade warning for non-armé4 architectures when the build target is
Android.

Removed

e Remove dead Gradle code from the Android module.

[1.4.0] - 2023-05-19

This release breaks ABI/API compatibility with the previous versions.

Added

e Added support for the stable release of Unreal Engine 5.2 (the preview release
has been supported since vi.2.0).

e Added Linux AArche4 platform support.

e Added a new Grab component that can turn any actor into a grabbable object.

e Added a new Touch component that enables haptic feedback such as Buzz and
Force-Feedback commands.

e Added an optional feature in order to automatically stop all haptics on the
EndPlay event, wherever the virtual hand component is used. By default, it's
enabled.

421 /461

The SenseGlove Unreal Engine Handbook

Fixed

e Fix Blueprint signatures for USGVirtualHandComponentKismetLibrary and make
all the Blueprint exposed functions static.

Changed

e SenseGlove libraries have been updated to v2.7.1-965f90c with support for
Linux AArché4 .

e The Virtual Hand and the Wrist Tracker debug gizmos (the intended use is only
for SenseGlove developers for really low-level stuff; thus won't affect the users
of the plugin at all) have been disabled and will be ignored due to an esoteric
bug in the settings systems which has been scheduled to be fixed in the future
releases.

Removed

e Removed the redundant SenseGloveCoreTypes module which causes all kinds
of packaging issues with certain versions of the engine.

Deprecated

e This is the last release to support Unreal Engine 4.27 and please keep in mind
that the current release is not obtainable through the Unreal Engine
Marketplace. The latest published version on the Marketplace for 4.27 is
v1.3.1.Per Epic's Marketplace policy regarding Code Plugins, we are only able
to distribute or update the SenseGlove plugin for the last three stable versions
of Unreal Engine. As a result, we won't be able to publish updates or bug fixes
for the older versions of the Engine except on rare occasions and only through
our official repository on Microsoft Azure DevOps.

422/ 461

The SenseGlove Unreal Engine Handbook

[1.3.1] - 2023-04-28

Fixed

e Fix RUNUAT build issues caused by missing headers.
e Minor documentation fixes.

[1.3.0] - 2023-04-28

This release breaks ABI/API compatibility with the previous versions in addition to
breaking coordinates systems conversions between Unreal Engine and the
SenseGlove libraries.

Added

e Anew generic SenseGlove Debug module.
e Adebug virtual hand.

Fixed

e Fix the wrist tracker miscalculations for the Quest 2 controllers (other headsets
might need fixing as well, in that case, future releases will address that).

e Minor code improvement and fixes.

e Minor documentation fixes.

Changed

e Breaking API/ABI changes in the Settings and the main SenseGlove module due

to some settings refactoring.
e Breaking changes in the SenseGlove/Unreal coordinates systems conversions
due to underlying changes in the SenseGlove Core Libraries.

423 /461

The SenseGlove Unreal Engine Handbook

e SenseGlove libraries have been updated to v2.6.0-aac3d56 .

[1.2.1] - 2023-03-30

Fixed

e Fix RUNUAT build issues with Android.

[1.2.0] - 2023-03-28

This release breaks ABI/API compatibility with the previous versions.

Added

e Android/Oculus on-device glove calibration.

e Introduced the animated Virtual Hand Model (as a set of virtual hand and wrist
tracker components and an actor) with in-editor animation availability.

e Introduced SGPawn, SGPlayerController, SGGameModeBase, etc classes.

e Added an internal SenseGloveCoreTypes module in order to share common
SenseGloveCore types between various modules.

e Segregated Android binaries for NDK r21e (UE 4.27 and 5.0)and r25b (UE
5.1, 5.2).

e Fully functional and stable Linux development support.

e Fully functional and stable Unreal Engine 5.2 preview support has been added.

e Added a Plugin's settings manager and two new modules SenseGloveSettings
and SenseGloveSettingsKismet.

424] 461

The SenseGlove Unreal Engine Handbook

Changed

e SenseGlove libraries have been updated to the Linux-aware version: v2.5.0-
8069342 .

e APl has changed to use degrees instead of radians.

e SGCoordinates utility class name has been changed to sGAngles and now the
plugin APl uses degrees in contrast of SenseGlove libraries by default.

e Migrate common nested array types into the SenseGloveTypes module from
the SenseGloveCore module.

Removed

e Removed a few thousand lines of archaic pre-public-release dead code.
Dropped Android NDK r21b binaries used by the older engine versions.
Purged the dead code for dropped engine versions by vi.1.1 (4.22, 4.23,
4.24, 4.25,and 4.26) that carried over to the current version.

Removed redundant SGConnectImpl/ SGPlatform.

Removed redundant SGTypes / SGConnectTypes .

Known Issues

e Wrist Tracker's offsets are a bit off (e.g. on Quest 2), scheduled to be fixed in the
next patch release.

[1.1.1] - 2023-02-07

Added

e Initial support for the upcoming Unreal Engine 5.2.
e Add support for Android armeabi-v7a with neon, x86-64, and x86 builds in
addition to armé4-v8a.

425/ 461

The SenseGlove Unreal Engine Handbook

Fixed

e Fix various Android build issues.
e Some minor fixes and improvements.

Changed

e Bump SenseGlove libraries to v2.1.2-95ec6e7 .

[1.1.0] - 2023-02-03

Added

e Whitelist Android as a target platform.
e Introduce Android support.
e Add third-party library SGConnect for Android vi.1.0.

Fixed

e Fix Android build issues caused by the log module.

Changed

e SGConnect and SGCore libraries have been updated to v2.1.1-6569c74 .

Removed

e Removed the enum utils class due to ANY_PACKAGE deprecation warnings in
Unreal Engine 5.1.

426 / 461

The SenseGlove Unreal Engine Handbook

e Support for older versions of the Engine (namely, 4.22, 4.23, 4.24, 4.25,and
4.26) has been dropped.

[1.0.4] - 2022-12-02

This is a minor release focusing mostly on adherence to the Unreal Engine
Marketplace Guidelines based on the feedback from Epic Games.

Added

e Added support for MSVC 2017.

Changed

e Updated SenseGlove libraries (SGCore/SGConnect) to v2.6.4.

[1.0.3] - 2022-11-29

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

Changed

o Adjust Config/FilterPlugin.ini in order to conform to Epic's Market Place
Guidelines.

427 1 461

The SenseGlove Unreal Engine Handbook

[1.0.2] - 2022-11-27

This is a minor release focusing on adherence to the Unreal Engine Marketplace
Guidelines based on the feedback from Epic Games.

Added

e Added the newly acquired Unreal Engine Market Place Offer ID to the .uplugin
file.

e List the dotfiles inside the FilterPlugin.ini file as well.

e Add the copyright notice to the source files missing it.

e Add the SenseGlove SDK license to the third-party license file.

Fixed

e Fix the readme typos and errors.
e Minor fixes in the changelog for previous releases.

[1.0.1] - 2022-11-25

Changed

e Exposed SenseGloveTypes as a public dependency in SenseGloveConnect and
SenseGloveCore modules, so that the C++ users of the APl don't need to
explicitly add it as a dependency.

e (Cleaned up the redundant headers/modules dependencies from SGCore
headers.

Fixed

e Fix RUnUAT build issues prior to Epic Store submission.

428 /461

The SenseGlove Unreal Engine Handbook

[1.0.0] - 2022-11-24

Added

e Initial public release of the SenseGlove haptic API for Unreal Engine with
support for Microsoft Windows and GNU/Linux.

429/ 461

The SenseGlove Unreal Engine Handbook

430/ 461

The SenseGlove Unreal Engine Handbook

Directory Structure

— Confiig

— Documentation (this will be generated by running the <code>make</code>

command -inside the Handbook directory)

— Handbook (this 1is the mdBook source code, used to generate the

Documentation folder and not distributed to [Fab](https://www.fab.com/))

—— Resources

— Source (various plug-in modules)

— SenseGlove (the UE-specific high-level API)
— SenseGloveAndroid (the Android-specific module)

— SenseGloveBackend (responsible for -initialization and

deinitialization of the backend libraries)

from the

— SenseGloveBackendKismet (exposes Blueprint-specific functionality
SenseGloveBackend module)

— SenseGloveBuildHacks (uses Exceptions and RTTI, +internally used

for compiler-specific build hacks)

— SenseGloveConnect (exposes part of the SGConnect low-level API to

C++)

— SenseGloveConnectImpl (uses Exceptions and RTTI, intended for
internal use only)

— SenseGloveConnectKismet (SGConnect functionality exposed to
Blueprint)

— SenseGloveCore (exposes part of the SGCoreCpp low-level API to
C++)

— SenseGloveCoreImpl (uses Exceptions and RTTI, +intended for
internal use only)

— SenseGloveCoreKismet (SGCoreCpp functionality exposed to

431/ 461

The SenseGlove Unreal Engine Handbook

Blueprint)
— SenseGloveDebug (a utility debug module)

— SenseGloveDebugKismet (exposes Blueprint-specific functionality
from the SenseGloveDebug module)

—— SenseGloveEditor (the Editor module)

— SenseGlovelInterop (internally used for +interoperability between
RTTI disabled/enabled modules)

— SenseGloveKismet (exposes Blueprint-specific functionality from
the SenseGlove module)

— SenseGlovelLog (the internal log module)
— SenseGloveSettings (the plugin's settings manager)

— SenseGloveSettingsKismet (exposes Blueprint-specific
functionality from the SenseGloveSettings module)

— SenseGloveTracking (provides XR_EXT_hand_tracking support, HMD
auto-detection, and SenseGlove device tracking)

— SenseGloveTrackingKismet (exposes Blueprint-specific
functionality from the SenseGloveTracking module)

— SenseGloveTypes (exposes various enums from the backend librariies
and also types from the SenseGlove module)

— SenseGloveUtils (the [internal utility module)

— ThirdParty (3rd-party dependencies)
— android (.jar file Java libraries for Android)
debug
release
— 1include (header files)
L—— SenseGlove
BLE (SGBLE headers)

Common (SGCommon headers)
432/ 461

5.1+)

Rust)

AArch64 architecture)

x86-64 architecture)

The SenseGlove Unreal Engine Handbook

—— Connect (SGConnect headers)

—— Core (SGCore headers)

— Log (SGLog headers)

— Llib (platform-specific pre-built binary dependencies)

—— android

L—— r25b (Android NDK r25b dependencies for UE

—— aarch64 (64-bit ARM variant of Android)
debug

release

— Xx86-64 (64-bit x86-64 variant of Android)
debug
release

— Linux

— rustc (GNU/Linux binary dependencies built with

— aarch64 (dependencies targeting GNU/Linux

debug

release

— x86-64 (dependencies targeting GNU/Linux

debug
release

— v22 (5.4 GNU/Linux dependencies)

L—— aarch64 (dependencies targeting GNU/Linux
433/ 461

The SenseGlove Unreal Engine Handbook

AArch64 architecture)

x86-64 architecture)

AArch64 architecture)

x86-64 architecture)

AArch64 architecture)

x86-64 architecture)

debug

release

—— x86-64 (dependencies targeting GNU/Linux

debug
release
— v23 (UE 5.5 GNU/Linux dependencies)

— aarch64 (dependencies targeting GNU/Linux

debug

release

—— x86-64 (dependencies targeting GNU/Linux

debug

release

— v25 (UE 5.6 GNU/Linux dependencies)

— aarch64 (dependencies targeting GNU/Linux

debug

release

— x86-64 (dependencies targeting GNU/Linux

debug

release

— windows

L—— v143 (Microsoft Visual Studio 2022
434461

The SenseGlove Unreal Engine Handbook

dependencies)

L—— x86-64 (dependencies targeting Microsoft
Windows x86-64 architecture)

debug

release

— rustc (Microsoft Windows binary dependencies
built with Rust)

L—— x86-64 (dependencies targeting Microsoft
Windows x86-64 architecture)

debug
release

— SGBleThirdPartyLibs (Third-party module providing SGBLE
headers and libraries)

— SGConnectThirdPartyHeaders (Third-party module providing
SGConnect headers)

— SGConnectThirdPartyLibs (Third-party module providing
SGConnect headers and libraries)

— SGCoreThirdPartylLibs (Third-party module providing SGCore
headers and libraries)

— SGSerialThirdPartyLibs (Third-party module providing
github.com/wjwwood/serial headers and libraries)

435/ 461

The SenseGlove Unreal Engine Handbook

Extra Resources

There are various resources available for older versions of the SenseGlove Unreal
Engine Plugin prior to v2.1.x that might still be partially relevant. These include
example projects, demo scenes, and tutorials. Plans are underway to provide new
example projects, demo scenes, and tutorials for the latest release. In the meantime,
the outdated resources can still be beneficial

Examples and Demo Projects

e Abasic OpenXR-compatible Blueprint demo demonstrating basic functionality
such as grab/release, touch with buzz and force-feedback, etc (compatible with
versions v2.1.0+).

e Abasic Blueprint demo demonstrating basic functionality such as grab/release,
touch with buzz and force-feedback, etc (compatible with versions >=v1.4.x and
<=v2.0.x).

e Example C++ API Project (only compatible with early v1.x.x releases)

e Example Blueprint API Project (only compatible with early v1.x.x releases)

Third-Party OpenXR Integration Demos

e AVRExpansionPlugin Integration Demo for UE 5.4
o Documentation

Tutorials

Finding out your SenseGlove plugin version

Plugin installation guide for Microsoft Windows

C++ & Blueprint examples for Microsoft Windows
Plugin and examples installation guide for GNU/Linux

436 / 461

https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo-OpenXR
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGBasicDemo
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundCpp
https://dev.azure.com/SenseGlove/_git/SenseGlove-Unreal-SGPlaygroundBP
https://dev.azure.com/SenseGlove/_git/SGVRETemplate
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/advanced-topics/openxr/third-party-integrations/
https://youtu.be/iF0JU2kpNhw
https://youtu.be/QqWeRHNceqY
https://youtu.be/qRaNOc3OHqU
https://youtu.be/1T7LAGp3e6I

The SenseGlove Unreal Engine Handbook

How to connect to Nova gloves on GNU/Linux using Blueman Bluetooth
Manager

How to connect to Nova gloves on GNU/Linux using command-line

The basic C++ and Blueprint APl usage

How to setup the virtual hand model & the SenseGlove pawn

How to deploy to Oculus Quest 2 and Android

Setting up Grabbing and Haptic Feedback functionalities (SGBasicDemo)
Setting up VIVE Pro & VIVE Trackers in Unreal Engine

Setting up VIVE Focus 3 & VIVE Wrist Trackers in Unreal Engine
SGBasicDemo: setup throwing objects and physics settings for the real and
virtual hands

SGBasicDemo v2: upgrading your projects to the SenseGlove Unreal Engine
Plugin v2.0.0

Third-Party Tutorials

OpenXR Tutorials

Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture Detection
in Unreal Engine

Procedural Virtual Hand Mesh Animation Using OpenXR Hand-Tracking Data -
Part 1

Procedural Virtual Hand Mesh Animation Using OpenXR Hand-Tracking Data -
Part 2

Unreal Engine OpenXR Hand-Tracking on Android with Meta XR (Quest
3S/3/Pro/2) and HTC VIVE OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

Android (Meta Quest / HTC VIVE) Tutorials

Build & Deploy Unreal Engine 5.5 Projects APK to Android & Meta Quest
3S/3/Pro/2 in Standalone Mode

Unreal Engine OpenXR Hand-Tracking on Android with Meta XR (Quest
3S/3/Pro/2) and HTC VIVE OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

437/ 461

https://youtu.be/f34ofFkx_Ow
https://youtu.be/f34ofFkx_Ow
https://youtu.be/Swkk_KmXwq8
https://youtu.be/9ICAH2ZUvVk
https://youtu.be/_PEppB_yPCU
https://youtu.be/zU8Nf4ssOO0
https://youtu.be/jN4VcfXVrTA
https://youtu.be/jvFDNdq_4xQ
https://youtu.be/SGmQevkzsY4
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/K9Qr_LqgTcY
https://youtu.be/VbWfoep-Hsg
https://youtu.be/VbWfoep-Hsg
https://youtu.be/67v-sEhidvM
https://youtu.be/67v-sEhidvM
https://youtu.be/TPEA1GJr_kU
https://youtu.be/TPEA1GJr_kU
https://youtu.be/xEnuephuNmw
https://youtu.be/xEnuephuNmw
https://youtu.be/BWd3MwtfTJE
https://youtu.be/BWd3MwtfTJE
https://youtu.be/EClbEbNcl4k
https://youtu.be/EClbEbNcl4k
https://youtu.be/BWd3MwtfTJE
https://youtu.be/BWd3MwtfTJE

The SenseGlove Unreal Engine Handbook

VR Optimization

e Optimizing Unreal Engine VR Projects for Higher Framerates (Meta Quest, HTC
VIVE, FFR, ETFR, NVIDIA DLSS, AMD FSR, and Intel XeSS Tips Included!)

438 /461

https://youtu.be/67CZqMrAOns
https://youtu.be/67CZqMrAOns

The SenseGlove Unreal Engine Handbook

SenseGlove Unreal Engine Plugin
License

The SenseGlove Unreal Engine Plugin is licensed under the terms of the MIT License.
Below is the MIT License:

MIT License
Copyright (c) 2020 - 2025 SenseGlove

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, 1including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software -s
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included 1in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components. For a list of these libraries and their own
respective open-source licenses take a look at the third-party licenses, please.

439 /461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/third-party.html

The SenseGlove Unreal Engine Handbook

SenseGlove Unreal Engine Handbook
License

The SenseGlove Unreal Engine Handbook is licensed under the terms of the CC BY
(Creative Commons Attribution) License. Below is the CC BY License:

440/ 461

The SenseGlove Unreal Engine Handbook
Attribution 4.0 International

Copyright (c) 2020 - 2025 SenseGlove

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes +its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This 1includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If

the licensor's permission 1is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of

441/ 461

The SenseGlove Unreal Engine Handbook

the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights 1in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be +interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights 1in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 —- Definitions.

a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material 1is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material +is always produced where the Licensed Material is
synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright
and Similar Rights 1in Your contributions to Adapted Material -in
accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

d. Effective Technological Measures means those measures that, in the
442 | 461

The SenseGlove Unreal Engine Handbook

absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.

g. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.

i. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

k. You means the -individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to

exercise the Licensed Rights in the Licensed Material to:

443/ 461

The SenseGlove Unreal Engine Handbook

a. reproduce and Share the Licensed Material, in whole or
in part; and

b. produce, reproduce, and Share Adapted Mater-dial.

2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section
6(a).

4, Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights -in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor —- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.

b. No downstream restrictions. You may not offer or -impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement. Nothing 1in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a) (1) (A)(i).

b. Other rights.
444 | 461

1.

The SenseGlove Unreal Engine Handbook

Moral rights, such as the right of dintegrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

Patent and trademark rights are not licensed under this
Public License.

. To the extent possible, the Licensor waives any right to

collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 —- License Conditions.

Your exercise of the Licensed Rights 1is expressly made subject to the
following conditions.

a. Attribution.

1.

If You Share the Licensed Material (including in modified
form), You must:

a. retain the following if it is supplied by the Licensor
with the Licensed Materdial:

i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym 1if
designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of
warranties;

v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
445 / 461

The SenseGlove Unreal Engine Handbook

b. indicate if You modified the Licensed Material and
retain an 1indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.

. You may satisfy the conditions in Section 3(a) (1) in any

reasonable manner based on the medium, means, and context -in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.

If requested by the Licensor, You must remove any of the
information required by Section 3(a) (1) (A) to the extent
reasonably practicable.

If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a) (1) grants You the right

C.

to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;

if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its dindividual contents) is Adapted Material; and

You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

446/ 461

a.

The SenseGlove Unreal Engine Handbook

UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE

TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

The disclaimer of warranties and limitation of liability provided
above shall be -interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all Lliability.

Section 6 —— Term and Termination.

a.

b.

C.

This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.

Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:

1. automatically as of the date the violation 1is cured, provided
it is cured within 30 days of Your discovery of the
violation; or

2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations

of this Public License.

For the avoidance of doubt, the Licensor may also offer the
447/ 461

The SenseGlove Unreal Engine Handbook

Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.

. Sections 1, 5, 6, 7, and 8 survive termination of this Public

License.

Section 7 —- Other Terms and Conditions.

a.

b.

The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.

Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

For the avoidance of doubt, this Public License does not, and
shall not be tinterpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.

To the extent possible, 1if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.

No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.

Nothing in this Public License constitutes or may be +interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

Creative Commons 1is not a party to 1its public

licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those -{instances
will be considered the “Licensor.” The text of the Creative Commons

448/ 461

The SenseGlove Unreal Engine Handbook

public licenses is dedicated to the public domain under the CCO Public
Domain Dedication. Except for the limited purpose of indicating that
material 1is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of +its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

449/ 461

The SenseGlove Unreal Engine Handbook

Third Party Licenses

Please note that while the SenseGlove Unreal Engine Plugin is made available under
the MIT License, it utilizes a few third-party libraries with permissive free licenses as
well, in order to power various components.

The following third-party software are used and shipped with the SenseGlove Unreal
Engine Plugin:

e The SenseGlove SDK (a.k.a. SenseGlove Backend Libraries, or SenseGlove Core
Libraries)

e SGBLE and SGBLExx Rust Dependencies

e The Boost C++ Libraries

e The {fmt} Formatting Library

e The Loguru Logging Library License

e The Serial Communication Library

For more information consult their own respective open-source licenses, please.

450/ 461

file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-unreal-engine-plugin.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/senseglove-sdk.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/sgble-sgblexx-rust-dependencies.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/boost-cpp-libraries.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/fmt-formatting-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/loguru-loggin-library.html
file:///home/mamadou/dev/SGBasicDemo/Plugins/SenseGlove/Documentation/html/license/serial-communication-library.html

The SenseGlove Unreal Engine Handbook

SenseGlove SDK License

SENSEGLOVE SDK LICENSE
Copyright (c) 2020 - 2025 SenseGlove

Purchase of the Product does not entitle you to ownership or a license to any
software generated by SenseGlove for use with the Product (the “Software”).
To the extent that SenseGlove, 1in 1its sole discretion, grants you access to
any

such Software, the Software 1is licensed by us or by the relevant
licensor/owner

subject to the relevant end-user license agreement or other license terms
included with the Product and/or on the SenseGlove Websites {including the
Github

page of SenseGlove (the “License Terms*).

Specifically, SenseGlove shall have sole discretion to determine and change
the

availability, nature, features, content, versioning of any Software that it
makes available to you, for download through the the Github page of
SenseGlove

or otherwise (including the SenseGlove software developer kit (“SDK”)).
Purchase of a Product does not entitle you to access to any specific
features,

content or version of the SDK, -including and especially versions of the SDK
that

have not yet been made available to the public. SenseGlove will have no
obligation to provide any updates or upgrades to any Software it makes
available

to you, but in the event that it does, such updates, upgrades and any
documentation will be subject to the License Terms available at
https://www.senseglove.com/solutions/.

Except to the extent expressly provided by us 1in writing or under the License
Terms, the Software is provided “AS IS” without any warranties, terms or
conditions as to quality, fitness for purpose, non-infringement, performance
or

correspondence with description and we do not offer any warranties or
guarantees

in relation to the Software installation, configuration or error/defect
correction.

451/ 461

The SenseGlove Unreal Engine Handbook

SGBLE and SGBLExx Rust Dependency
Licenses

SGBLE and SGBLExx, components of the SenseGlove SDK, are built using the Rust
programming language. These libraries rely on a variety of open-source Rust crates.
To ensure commercial developers can use our SDK without licensing concerns, we
strictly rely on crates with permissive licenses at runtime.

Some dependencies, like r-efi, are dual-licensed and allow permissive use. The
only copyleft tool used is cbindgen, which is solely a build-time dependency. It is
employed to automatically generate C FFl bindings for SGBLE, which is implemented
in pure Rust. Since cbindgen is not required at runtime and acts more like a
transpiler (source-to-source compiler), it does not introduce any licensing risks for
commercial applications.

Below is a comprehensive list of all third-party crates and their corresponding
licenses used in SGBLE and SGBLExx:

452/ 461

The SenseGlove Unreal Engine Handbook

(MIT OR Apache-2.0) AND OFL-1.1 AND Ubuntu-font-1.0 (1): epaint_default_fonts
(MIT OR Apache-2.0) AND Unicode-3.0 (1): unicode-ident

OBSD OR Apache-2.0 OR MIT (1): adler2

Apache-2.0 (15): ab_glyph, ab_glyph_rasterizer, accesskit_winit, codespan-
reporting, dpi, gethostname, gl_generator, glutin, glutin_egl_sys,
glutin_glx_sys, glutin_wgl_sys, khronos_api, owned_ttf_parser, spirv, winit
Apache-2.0 OR Apache-2.0 WITH LLVM-exception OR MIT (7): Llinux-raw-sys,
linux-raw-sys, rustix, rustix, wasi, wasi, wit-bindgen-rt

Apache-2.0 OR BSD-2-Clause OR MIT (4): zerocopy, zerocopy, zerocopy-derive,
zerocopy-derive

Apache-2.0 OR BSD-3-Clause OR MIT (3): btleplug, num_enum, num_enum_derive
Apache-2.0 OR BSL-1.0 (1): ryu

Apache-2.0 OR LGPL-2.1-or-later OR MIT (1): r-efi

Apache-2.0 OR MIT (286): accesskit, accesskit_atspi_common,
accesskit_consumer, accesskit_macos, accesskit_unix, accesskit_windows,
addr2line, ahash, android-activity, android_log-sys, android_logger,
android_system_properties, anstream, anstyle, anstyle-parse, anstyle-query,
anstyle-wincon, arboard, arrayvec, as-raw-xcb-connection, ash, async-
broadcast, async-channel, async-executor, async-fs, async-io, async-lock,
async-process, async-recursion, async-signal, async-task, async-trait,
atomic-waker, atspi, atspi-common, atspi-connection, atspi-proxies, autocfg,
backtrace, bit-set, bit-vec, bitflags, bitflags, block-buffer, blocking,
bluez-async, bluez-generated, bumpalo, cc, cesu8, cfg-if, cgl, clap,
clap_builder, clap_lex, colorchoice, concurrent-queue, core-foundation, core-
foundation, core-foundation-sys, core-graphics, core-graphics-types,
cpufeatures, crc32fast, crossbeam-utils, crypto-common, ctor, ctor-proc-
macro, dbus, dbus-tokio, digest, displaydoc, document-features, downcast-rs,
dtor, dtor-proc-macro, ecolor, eframe, egui, egui-wgpu, egui-winit,
egui_glow, either, emath, enumflags2, enumflags2_derive, env_filter,
env_logger, epaint, equivalent, errno, event-listener, event-listener-
strategy, fastrand, fdeflate, flate2, foreign-types, foreign-types-macros,
foreign-types-shared, form_urlencoded, futures, futures-channel, futures-
core, futures-executor, futures-io, futures-lite, futures-macro, futures-
sink, futures-task, futures-util, getrandom, getrandom, gimli, gpu-alloc,
gpu-alloc-types, gpu-descriptor, gpu-descriptor-types, hashbrown, heck, heck,
hermit-abi, hermit-abi, hex, home, humantime, -idna, idna_adapter, -image,
immutable-chunkmap, +indexmap, 1is_terminal_polyfill, -+itertools, itoa, jni,
jni, jni-sys, jobserver, jpeg-decoder, js-sys, khronos-egl, lazy_static,
libc, libdbus-sys, litrs, lock_api, log, memmap2, metal, naga, ndk, ndk-
context, ndk-sys, ndk-sys, nohash-hasher, num-traits, object, once_cell,
ordered-stream, parking, parking_lot, parking_lot_core, paste, percent-
encoding, pin-project, pin-project-internal, pin-project-lite, pin-utils,
piper, pkg-config, png, polling, ppv-1lite86, pretty_env_logger, proc-macro-
crate, proc-macro2, profiling, quote, rand, rand, rand_chacha, rand_chacha,
rand_core, rand_core, regex, regex—automata, regex-syntax, renderdoc-sys,
rustc-demangle, rustc-hash, rustversion, scoped-tls, scopeguard, serde,
serde_derive, serde_json, serde_repr, serde_spanned, shal, shlex, signal-

453 /461

The SenseGlove Unreal Engine Handbook

hook-registry, smallvec, smol_str, socket2, stable_deref_trait,
static_assertions, syn, tempfile, thiserror, thiserror, thiserror-impl,
thiserror-impl, thread_local, toml, toml_datetime, toml_edit, ttf-parser,
type-map, typenum, unicode-segmentation, unicode-width, unicode-xid, url,
utfle_iter, utf8_iter, utf8parse, uuid, version_check, wasm-bindgen, wasm-
bindgen-backend, wasm-bindgen-futures, wasm-bindgen-macro, wasm-bindgen-
macro-support, wasm-bindgen-shared, web-sys, web-time, webbrowser, weezl,
wgpu, wgpu-core, wgpu-hal, wgpu-types, winapi, winapi-i686-pc-windows-gnu,
winapi-x86_64-pc-windows-gnu, windows, windows, windows-core, windows-core,
windows—implement, windows—implement, windows—interface, windows—interface,
windows-result, windows-result, windows-strings, windows-sys, windows-sys,
windows-sys, windows-targets, windows-targets, windows-targets,
windows_aarch64_gnullvm, windows_aarch64_gnullvm, windows_aarch64_gnullvm,
windows_aarch64_msvc, windows_aarch64_msvc, windows_aarch64_msvc,
windows_i686_gnu, windows_i686_gnu, windows_i686_gnu, windows_i686_gnullvm,
windows_i686_msvc, windows_i686_msvc, windows_i686_msvc, windows_x86_64_gnu,
windows_x86_64_gnu, windows_x86_64_gnu, windows_x86_64_gnullvm,
windows_x86_64_gnullvm, windows_x86_64_gnullvm, windows_x86_64_msvc,
windows_x86_64_msvc, windows_x86_64_msvc, writel6, x1llrb, xllrb-protocol
Apache-2.0 OR MIT OR Zlib (12): bytemuck, bytemuck_derive, cursor-icon, glow,
miniz_oxide, objc2-app-kit, objc2-core-bluetooth, objc2-core-foundation,
objc2-core-graphics, objc2-io-surface, raw-window-handle, xkeysym
BSD-2-Clause (1): arrayref
BSD-3-Clause (3): jni-utils, tiny-skia, tiny-skia-path
BSL-1.0 (2): clipboard-win, error-code
CCO-1.0 (1): hexf-parse
ISC (1): libloading
MIT (91): android-properties, block, block2, block2, bytes, calloop, calloop-
wayland-source, cfg_aliases, combine, dashmap, dispatch, dlib, endi, generic-
array, glutin-winit, is-terminal, libredox, malloc_buf, memoffset, mio, nix,
objc, objc-sys, objc2, objc2, objc2-app-kit, objc2-cloud-kit, objc2-contacts,
objc2-core-data, objc2-core-image, objc2-core-location, objc2-encode, objc2-
foundation, objc2-foundation, objc2-link-presentation, objc2-metal, objc2-
quartz-core, objc2-symbols, objc2-ui-kit, objc2-uniform-type-identifiers,
objc2-user-notifications, orbclient, ordered-float, quick-xml, quick-xml,
redox_syscall, redox_syscall, sctk-adwaita, serde-xml-rs, simd-adler32, slab,
smithay-client-toolkit, smithay-clipboard, strict-num, strsim, strum,
strum_macros, synstructure, tiff, tokio, tokio-macros, tokio-stream, tokio-
util, tracing, tracing-attributes, tracing-core, uds_windows, wayland-
backend, wayland-client, wayland-csd-frame, wayland-cursor, wayland-
protocols, wayland-protocols-plasma, wayland-protocols-wlr, wayland-scanner,
wayland-sys, winnow, x11-dl, xcursor, xdg-home, xkbcommon-dl, xml-rs, zbus,
zbus-lockstep, zbus-lockstep-macros, zbus_macros, zbus_names, zbus_xml,
zvariant, zvariant_derive, zvariant_utils
MIT OR Unlicense (7): aho-corasick, byteorder-1lite, memchr, same-file,
termcolor, walkdir, winapi-util
MPL-2.0 (1): cbindgen
N/A (2): sgble, sgblueman

454/ 461

The SenseGlove Unreal Engine Handbook

Unicode-3.0 (19): +dcu_collections, qicu_locid, icu_locid_transform,
icu_locid_transform_data, +icu_normalizer, icu_normalizer_data,
icu_properties, icu_properties_data, +icu_provider, icu_provider_macros,
litemap, tinystr, writeable, yoke, yoke-derive, zerofrom, zerofrom-derive,
zerovec, zerovec-derive

Zlib (2): foldhash, slotmap

For detailed terms of use, please refer to the license files in each project's upstream
repository.

455/ 461

The SenseGlove Unreal Engine Handbook

Boost C++ Libraries License

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software'") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices 1in the Software and this entire statement, dincluding
the above license grant, this restriction and the following disclaimer,
must be included 1in all copies of the Software, in whole or 1in part, and
all derivative works of the Software, unless such copies or derivative
works are solely 1in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

456 / 461

The SenseGlove Unreal Engine Handbook

{fmt} Formatting Library License

Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software 1is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included 1in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-—— Optional exception to the license ——-
As an exception, 1if, as a result of your compiling your source code, portions
of this Software are embedded into a machine-executable object form of such

source code, you may redistribute such embedded portions in such object form
without including the above copyright and permission notices.

457] 461

The SenseGlove Unreal Engine Handbook

Loguru Logging Library License

This is free and unencumbered software released +into the public domain.

Anyone 1is free to copy, modify, publish, use, compile, sell, or
distribute this software, either 1in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.

In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment 1in perpetuity of all present and future rights to this
software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <https://unlicense.org>

458/ 461

The SenseGlove Unreal Engine Handbook

Serial Communication Library License

Copyright (c) 2012 William Woodall, John Harrison

Permission is hereby granted, free of charge, to any person obtaining a copy
of

this software and associated documentation files (the "Software"), to deal 1in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of

the Software, and to permit persons to whom the Software is furnished to do
so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included 1in
all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

459/ 461

The SenseGlove Unreal Engine Handbook

Build Information

The SenseGlove Unreal Engine Handbook

Han.d-book 57
Revision
Handbook
Revision URL https://unreal.docs.senseglove.com/2.7
Handbook https://unreal.docs.senseglove.com/2.7/the-senseglove-
PDF URL unreal-engine-handbook-2.7.pdf
Handbook https://unreal.docs.senseglove.com/2.7/the-senseglove-
ePub URL unreal-engine-handbook-2.7.epub
Git Branch HEAD
Git Tag v2.7.0
Git Commit d7e61f63
Git Commits

: 0
Since Tag
Git Tree State clean
Git Is Shallow

no
Clone
Git Latest V2.7.0
Remote Tag
Git Version v2.7.0
Git Version
. 2

Major
Git Version y
Minor
Git Version 0
Patch
Plugin Version v2.7.0
Plugin Version 7

Major

460/ 461

https://unreal.docs.senseglove.com/2.7
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.pdf
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.pdf
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.epub
https://unreal.docs.senseglove.com/2.7/the-senseglove-unreal-engine-handbook-2.7.epub

The SenseGlove Unreal Engine Handbook

The SenseGlove Unreal Engine Handbook

Plugin Version
Minor

Plugin Version
Patch

0

Build Host

mamadou-legion

Build Time

Tue Nov 18, 2025 04:21 CET +0100

461 /461

	Introduction
	Overview
	🚀 Getting Started
	⚙️ Plugin Configuration
	💡 Miscellaneous
	🛠️ Advanced Topics
	🔌 Low-Level API
	📑 Appendix

	📜 License
	Plugin Installation
	Video Tutorials

	Plugin Installation via the Epic GamesLauncher
	Plugin Installation via Microsoft AzureDevOps Repositories
	Download a Specific Version
	Download a Specific Version for a Specifc UnrealEngine Version
	Download the Bleeding-edge Development Branch
	Installation
	Engine-level installation
	Per-project installation
	Linux Build Instructions

	Enabling The SenseGlove Unreal EnginePlugin and Veirfying the Plugin Version
	Video Tutorial

	SenseCom
	SenseCom (Bluetooth Low Energy)
	SenseCom on Android (Bluetooth LowEnergy)
	SenseCom on GNU/Linux (BluetoothLow Energy)
	SenseCom on Microsoft Windows(Bluetooth Low Energy)
	SenseCom (Bluetooth Serial)
	SenseCom on Android (Bluetooth Serial)
	SenseCom on GNU/Linux (BluetoothSerial)
	Connect to Nova gloves using BluemanBluetooth Manager (Bluetooth Serial)
	Video Tutorial

	Connect to Nova gloves usingCommand-line (Bluetooth Serial)
	Scripts to Easily Connect and Disconnect from a Glove
	Example Scripts for a Left-Handed Glove

	Video Tutorial

	SenseCom on Microsoft Windows(Bluetooth Serial)
	Enabling XR_EXT_hand_tracking OpenXRExtension on VR Headsets
	PCVR Mode
	Standalone Mode
	Third-Party Tutorials

	Enabling XR_EXT_hand_tracking OpenXRExtension on VR Headsets in PCVR Mode
	Enabling OpenXR Plugin and DisablingOpenXRHandTracking Plugin
	Meta Quest
	Meta Quest Link App
	Meta XR Plugin

	HTC VIVE
	OpenXRViveTracker Plugin
	VIVE Business Streaming App
	SteamVR App

	SenseGlove Wrist Tracking Settings

	Enabling XR_EXT_hand_tracking OpenXRExtension on VR Headsets in StandaloneMode
	Enabling OpenXR Plugin and DisablingOpenXRHandTracking Plugin
	Meta Quest
	Meta XR Plugin

	HTC VIVE
	OpenXRViveTracker Plugin
	ViveOpenXR Plugin

	SenseGlove Wrist Tracking Settings

	Third-Party Tutorials:XR_EXT_hand_tracking Setup
	Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture Detection in Unreal Engine
	Unreal Engine OpenXR Hand-Tracking on Androidwith Meta XR (Quest 3S/3/Pro/2) and HTC VIVEOpenXR (Focus Vision/XR Elite/Focus 3) Plugins

	Setting Up the SenseGlove DefaultClasses
	Setting Up SGGameModeBase
	Extending SGGameModeBase

	Setting Up SGPawn
	Extending SGPawn
	Customizing SGPawn

	Setting Up SGPlayerController
	Extending SGPlayerController

	Setting Up SGGameInstance
	Extending SGGameInstance

	Setting Up SGGameUserSettings
	Extending SGGameUserSettings

	Setting Up the Virtual Hand Meshes
	Compatible Virtual Hand Meshes
	Exporting the Virtual Hand Meshes from theVRTemplate
	Importing the Virtual Hand Meshes into Your OwnProject
	Setting up the Rigid Bodies
	Setting up the SenseGlove Grab and Touch Sockets
	Accessing the SenseGlove Sockets Editor
	Adding the SenseGlove Sockets
	Clearing All Existing Sockets

	Configuring the SGPawn and Plugin Virtual HandMesh Settings
	SGPawn Configuration
	Plugin Virtual Hand Mesh Settings

	Setting Up the Wrist Tracking Hardware
	Prerequisites
	Meta Quest 2 Controller
	Meta Quest Pro Controller
	Meta Quest 3 Controller
	HTC VIVE Tracker
	HTC VIVE Focus 3 Wrist Tracker
	PCVR Mode
	Standalone Mode

	Setting up the Grab/Release System
	Video Tutorials

	Setting up the Touch System
	Video Tutorials

	The Plugin Settings
	Settings Categories

	The Plugin Initialization Settings
	bValidateIfDefaultClassesAreSGCompliant

	The Game User Settings
	The Hardware-benchmarking Settings
	WorkScale
	CPUMultiplier
	GPUMultiplier

	The Tracking Settings
	bFallbackToHandTrackingIfNoGloveDetected
	Glove Tracking Settings
	Hand Tracking Settings
	HMD Tracking Settings
	Wrist Tracking Settings

	The Glove-tracking Settings
	DataRetrievalRefreshRate

	The Hand-tracking Settings
	bUseMoreSpecificMotionSourceNames
	bSupportLegacyControllerMotionSources

	The HMD-tracking Settings
	ViveHMDDetectionPriority

	The Wrist-tracking Settings
	OpenXRPositionalTrackingProvider
	TrackingHardware
	TrackingHardwareLocationOffsetLeftHand
	TrackingHardwareLocationOffsetRightHand
	TrackingHardwareRotationOffsetLeftHand
	TrackingHardwareRotationOffsetRightHand
	LeftHandMotionSource
	RightHandMotionSource
	DebuggingSettings
	Overriding the Wrist-tracking Settings from the WristTracker Component

	The Wrist-tracking Debugging Settings
	bDrawDebugWristTracker
	DebugWristTrackerSettings

	The Virtual Hand Settings
	bVisibleWhenHandDataUnavailable
	Animation Settings
	Debugging Settings
	Grab Settings
	Haptics Settings
	Mesh Settings
	Touch Settings
	Overriding the Virtual Hand Settings from the WristTracker Component

	The Virtual Hand Animation Settings
	AnimationBoneRotationCorrectionOffset
	bShouldAnimationApplyBoneLocation

	The Virtual Hand Debugging Settings
	bDrawDebugVirtualHand
	DrawingMode
	DebugCubicHandSettings
	DebugGizmoHandSettings

	The Virtual Hand Grab Settings
	GrabAttachPointSocketName
	GrabAttachPointSocketTransform
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName

	The Virtual Hand Haptics Settings
	bAutoStopAllHapticsOnEndPlay

	The Virtual Hand Mesh Settings
	LeftHandReferenceMesh
	RightHandReferenceMesh
	DistalPhalangesLengthSettings
	RootBoneRotationCorrection
	LeftHandDefaultReferenceBoneTransforms
	RightHandDefaultReferenceBoneTransforms
	LeftHandBoneNames
	RightHandBoneNames
	DefaultLeftHandMeshPath
	DefaultLeftHandMeshPathOnly
	DefaultRightHandMeshPath
	DefaultRightHandMeshPathOnly

	The Virtual Hand Touch Settings
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName
	RingColliderSocketName
	PinkyColliderSocketName

	Overriding The Plugin Settings
	The SenseGlove Virtual Hand Component
	The SenseGlove Wrist Tracker Component

	The SenseGlove Console Commands
	SGGameUserSettings Console Commands
	SG_GetEngineScalabilitySettings
	SG_SetEngineScalabilitySettings

	Deploying to Android (Standalone)
	Third-Party Tutorials

	Third-Party Tutorials: AndroidStandalone Mode Deployment
	On-Click Unreal Engine 5.7 Android Packaging & APKBuild Tutorial | Meta Quest & HTC VIVE Standalone
	Build & Deploy Unreal Engine 5.5 Projects APK toAndroid & Meta Quest 3S/3/Pro/2 in Standalone Mode
	Unreal Engine OpenXR Hand-Tracking on Androidwith Meta XR (Quest 3S/3/Pro/2) and HTC VIVEOpenXR (Focus Vision/XR Elite/Focus 3) Plugins

	Upgrade Guide
	Optimizing Your Project for Higher FPS
	Meta Quest Link Advanced Graphics Preferences
	HTC VIVE Specific Optimizations in Standalone Mode
	Setting a Custom Pixel Density
	Setting a Lower Refresh Rate
	HTC VIVE Optimal Rendering Settings

	Game User Settings and Engine Scalability Settings
	Optimizing Unreal Projects for Mobile
	General Rendering Settings
	Texture Settings
	Lighting Settings
	Post-Processing Settings
	Materials and Shaders
	Level of Detail (LOD) Settings
	Engine Scalability Settings
	Physics and Collision
	Audio Settings
	Rendering API
	Culling

	Third-Party Tutorials: Optimizing YourProject for Higher FPS
	Optimizing Unreal Engine VR Projects for HigherFramerates (Meta Quest, HTC VIVE, FFR, ETFR, NVIDIADLSS, AMD FSR, and Intel XeSS Tips Included!)

	Safe and Reliable Glove Access inBlueprint
	OpenXR
	Consuming FXRHandTrackingState
	FXRHandTrackingState in Unreal Engine
	Structure Members of FXRHandTrackingState
	Organization of FXRHandTrackingState
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRHandTrackingState inBlueprint
	Drawing and Animating Virtual Hands

	Consuming FXRHandTrackingState inC++
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData
	FXRMotionControllerData in Unreal Engine
	Structure Members of FXRMotionControllerData
	Organization of FXRMotionControllerData
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRMotionControllerData inBlueprint
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData inC++
	Drawing and Animating Virtual Hands

	Third-Party OpenXR Integrations
	Comparison of Supported OpenXR Hand-InteractionSystems
	VR Expansion Plugin
	SGVRETemplate Demo Scene
	SGVRETemplate Modifications
	Blueprint Changes
	C++ Changes
	Changing Wrist-Tracker Offsets
	Changing Motion Source
	Adding More Gestures
	Video Summary

	SGVRETemplate Demo Calibration Scene

	Third-Party Tutorials: ConsumingOpenXR Hand-Tracking Data
	Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture Detection in Unreal Engine
	Procedural Virtual Hand Mesh Animation UsingOpenXR Hand-Tracking Data

	Low-level Blueprint API
	Low-level C++ API
	Platform Support Matrix
	Planned Features Completion Status
	Implemented as of v2.7.x
	Upcoming features planned for the v2.7.x release
	Planned features long-term

	Changelog
	[2.7.0] - 2025-11-18
	Added
	Fixed
	Changed
	Removed
	Deprecated
	Documentation

	[2.6.3] - 2025-06-27
	Documentation

	[2.6.2] - 2025-06-10
	Documentation

	[2.6.1] - 2025-06-05
	Fixed
	Changed
	Removed
	Documentation

	[2.6.0] - 2025-06-04
	Added
	Fixed
	Changed
	Removed
	Deprecated
	Documentation

	[2.5.0] - 2025-05-09
	Added
	Fixed
	Changed
	Removed
	Documentation

	[2.4.2] - 2025-02-17
	Documentation

	[2.4.1] - 2025-02-14
	Documentation

	[2.4.0] - 2025-02-14
	Added
	Fixed
	Changed
	Deprecated
	Documentation

	[2.3.2] - 2025-01-28
	Fixed

	[2.3.1] - 2024-11-27
	Fixed
	Changed

	[2.3.0] - 2024-11-13
	Added
	Fixed

	[2.2.2] - 2024-11-08
	Fixed

	[2.2.1] - 2024-10-23
	Documentation

	[2.2.0] - 2024-10-22
	Added
	Fixed
	Changed
	Documentation

	[2.1.4] - 2024-10-22
	Documentation

	[2.1.3] - 2024-10-11
	Added
	Fixed
	Changed

	[2.1.2] - 2024-09-02
	Fixed

	[2.1.1] - 2024-08-18
	Fixed
	Removed

	[2.1.0] - 2024-08-16
	Added
	Fixed
	Changed
	Removed
	Known Issues

	[2.0.8] - 2024-07-15
	Fixed

	[2.0.7] - 2024-05-29
	Fixed

	[2.0.6] - 2024-05-29
	Removed
	Fixed

	[2.0.5] - 2024-05-22
	Fixed

	[2.0.4] - 2024-05-17
	Fixed

	[2.0.3] - 2024-05-15
	Fixed
	Removed

	[2.0.2] - 2024-04-25
	Added
	Changed

	[2.0.1] - 2024-04-15
	Fixed
	Changed

	[2.0.0] - 2024-03-22
	Added
	Fixed
	Changed
	Removed

	[1.9.8] - 2024-03-12
	Fixed
	Changed

	[1.9.7] - 2024-02-18
	Fixed

	[1.9.6] - 2024-02-14
	Fixed

	[1.9.5] - 2024-02-09
	Fixed

	[1.9.4] - 2024-02-08
	Fixed

	[1.9.3] - 2024-02-03
	Fixed

	[1.9.2] - 2023-11-03
	Added
	Fixed

	[1.9.1] - 2023-10-11
	Fixed

	[1.9.0] - 2023-10-10
	Changed
	Fixed

	[1.8.0] - 2023-10-10
	Added
	Fixed

	[1.7.0] - 2023-09-14
	Added
	Changed
	Fixed

	[1.6.1] - 2023-08-14
	Fixed

	[1.6.0] - 2023-08-14
	Added
	Fixed
	Changed

	[1.5.3] - 2023-07-19
	Fixed
	Changed

	[1.5.2] - 2023-07-19
	Fixed

	[1.5.1] - 2023-07-13
	Fixed

	[1.5.0] - 2023-06-16
	Added
	Fixed
	Changed
	Removed

	[1.4.3] - 2023-06-01
	Fixed

	[1.4.2] - 2023-06-01
	Fixed

	[1.4.1] - 2023-05-29
	Fixed
	Removed

	[1.4.0] - 2023-05-19
	Added
	Fixed
	Changed
	Removed
	Deprecated

	[1.3.1] - 2023-04-28
	Fixed

	[1.3.0] - 2023-04-28
	Added
	Fixed
	Changed

	[1.2.1] - 2023-03-30
	Fixed

	[1.2.0] - 2023-03-28
	Added
	Changed
	Removed
	Known Issues

	[1.1.1] - 2023-02-07
	Added
	Fixed
	Changed

	[1.1.0] - 2023-02-03
	Added
	Fixed
	Changed
	Removed

	[1.0.4] - 2022-12-02
	Added
	Changed

	[1.0.3] - 2022-11-29
	Changed

	[1.0.2] - 2022-11-27
	Added
	Fixed

	[1.0.1] - 2022-11-25
	Changed
	Fixed

	[1.0.0] - 2022-11-24
	Added

	Directory Structure
	Extra Resources
	Examples and Demo Projects
	Third-Party OpenXR Integration Demos

	Tutorials
	Third-Party Tutorials
	OpenXR Tutorials
	Android (Meta Quest / HTC VIVE) Tutorials
	VR Optimization

	SenseGlove Unreal Engine PluginLicense
	SenseGlove Unreal Engine HandbookLicense
	Third Party Licenses
	SenseGlove SDK License
	SGBLE and SGBLExx Rust DependencyLicenses
	Boost C++ Libraries License
	{fmt} Formatting Library License
	Loguru Logging Library License
	Serial Communication Library License
	Build Information
	Introduction
	Overview
	🚀 Getting Started
	⚙️ Plugin Configuration
	💡 Miscellaneous
	🛠️ Advanced Topics
	🔌 Low-Level API
	📑 Appendix

	📜 License
	Plugin Installation
	Video Tutorials

	Plugin Installation via the Epic Games Launcher
	Plugin Installation via Microsoft Azure DevOps Repositories
	Download a Specific Version
	Download a Specific Version for a Specifc Unreal Engine Version
	Download the Bleeding-edge Development Branch
	Installation
	Engine-level installation
	Per-project installation
	Linux Build Instructions

	Enabling The SenseGlove Unreal Engine Plugin and Veirfying the Plugin Version
	Video Tutorial

	SenseCom
	SenseCom (Bluetooth Low Energy)
	SenseCom on Android (Bluetooth Low Energy)
	SenseCom on GNU/Linux (Bluetooth Low Energy)
	SenseCom on Microsoft Windows (Bluetooth Low Energy)
	SenseCom (Bluetooth Serial)
	SenseCom on Android (Bluetooth Serial)
	SenseCom on GNU/Linux (Bluetooth Serial)
	Connect to Nova gloves using Blueman Bluetooth Manager (Bluetooth Serial)
	Video Tutorial

	Connect to Nova gloves using Command-line (Bluetooth Serial)
	Scripts to Easily Connect and Disconnect from a Glove
	Example Scripts for a Left-Handed Glove

	Video Tutorial

	SenseCom on Microsoft Windows (Bluetooth Serial)
	Enabling XR_EXT_hand_tracking OpenXR Extension on VR Headsets
	PCVR Mode
	Standalone Mode
	Third-Party Tutorials

	Enabling XR_EXT_hand_tracking OpenXR Extension on VR Headsets in PCVR Mode
	Enabling OpenXR Plugin and Disabling OpenXRHandTracking Plugin
	Meta Quest
	Meta Quest Link App
	Meta XR Plugin

	HTC VIVE
	OpenXRViveTracker Plugin
	VIVE Business Streaming App
	SteamVR App

	SenseGlove Wrist Tracking Settings

	Enabling XR_EXT_hand_tracking OpenXR Extension on VR Headsets in Standalone Mode
	Enabling OpenXR Plugin and Disabling OpenXRHandTracking Plugin
	Meta Quest
	Meta XR Plugin

	HTC VIVE
	OpenXRViveTracker Plugin
	ViveOpenXR Plugin

	SenseGlove Wrist Tracking Settings

	Third-Party Tutorials: XR_EXT_hand_tracking Setup
	Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture Detection in Unreal Engine
	Unreal Engine OpenXR Hand-Tracking on Android with Meta XR (Quest 3S/3/Pro/2) and HTC VIVE OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

	Setting Up the SenseGlove Default Classes
	Setting Up SGGameModeBase
	Extending SGGameModeBase

	Setting Up SGPawn
	Extending SGPawn
	Customizing SGPawn

	Setting Up SGPlayerController
	Extending SGPlayerController

	Setting Up SGGameInstance
	Extending SGGameInstance

	Setting Up SGGameUserSettings
	Extending SGGameUserSettings

	Setting Up the Virtual Hand Meshes
	Compatible Virtual Hand Meshes
	Exporting the Virtual Hand Meshes from the VRTemplate
	Importing the Virtual Hand Meshes into Your Own Project
	Setting up the Rigid Bodies
	Setting up the SenseGlove Grab and Touch Sockets
	Accessing the SenseGlove Sockets Editor
	Adding the SenseGlove Sockets
	Clearing All Existing Sockets

	Configuring the SGPawn and Plugin Virtual Hand Mesh Settings
	SGPawn Configuration
	Plugin Virtual Hand Mesh Settings

	Setting Up the Wrist Tracking Hardware
	Prerequisites
	Meta Quest 2 Controller
	Meta Quest Pro Controller
	Meta Quest 3 Controller
	HTC VIVE Tracker
	HTC VIVE Focus 3 Wrist Tracker
	PCVR Mode
	Standalone Mode

	Setting up the Grab/Release System
	Video Tutorials

	Setting up the Touch System
	Video Tutorials

	The Plugin Settings
	Settings Categories

	The Plugin Initialization Settings
	bValidateIfDefaultClassesAreSGCompliant

	The Game User Settings
	The Hardware-benchmarking Settings
	WorkScale
	CPUMultiplier
	GPUMultiplier

	The Tracking Settings
	bFallbackToHandTrackingIfNoGloveDetected
	Glove Tracking Settings
	Hand Tracking Settings
	HMD Tracking Settings
	Wrist Tracking Settings

	The Glove-tracking Settings
	DataRetrievalRefreshRate

	The Hand-tracking Settings
	bUseMoreSpecificMotionSourceNames
	bSupportLegacyControllerMotionSources

	The HMD-tracking Settings
	ViveHMDDetectionPriority

	The Wrist-tracking Settings
	OpenXRPositionalTrackingProvider
	TrackingHardware
	TrackingHardwareLocationOffsetLeftHand
	TrackingHardwareLocationOffsetRightHand
	TrackingHardwareRotationOffsetLeftHand
	TrackingHardwareRotationOffsetRightHand
	LeftHandMotionSource
	RightHandMotionSource
	DebuggingSettings
	Overriding the Wrist-tracking Settings from the Wrist Tracker Component

	The Wrist-tracking Debugging Settings
	bDrawDebugWristTracker
	DebugWristTrackerSettings

	The Virtual Hand Settings
	bVisibleWhenHandDataUnavailable
	Animation Settings
	Debugging Settings
	Grab Settings
	Haptics Settings
	Mesh Settings
	Touch Settings
	Overriding the Virtual Hand Settings from the Wrist Tracker Component

	The Virtual Hand Animation Settings
	AnimationBoneRotationCorrectionOffset
	bShouldAnimationApplyBoneLocation

	The Virtual Hand Debugging Settings
	bDrawDebugVirtualHand
	DrawingMode
	DebugCubicHandSettings
	DebugGizmoHandSettings

	The Virtual Hand Grab Settings
	GrabAttachPointSocketName
	GrabAttachPointSocketTransform
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName

	The Virtual Hand Haptics Settings
	bAutoStopAllHapticsOnEndPlay

	The Virtual Hand Mesh Settings
	LeftHandReferenceMesh
	RightHandReferenceMesh
	DistalPhalangesLengthSettings
	RootBoneRotationCorrection
	LeftHandDefaultReferenceBoneTransforms
	RightHandDefaultReferenceBoneTransforms
	LeftHandBoneNames
	RightHandBoneNames
	DefaultLeftHandMeshPath
	DefaultLeftHandMeshPathOnly
	DefaultRightHandMeshPath
	DefaultRightHandMeshPathOnly

	The Virtual Hand Touch Settings
	DefaultColliderSize
	ThumbColliderSocketName
	IndexColliderSocketName
	MiddleColliderSocketName
	RingColliderSocketName
	PinkyColliderSocketName

	Overriding The Plugin Settings
	The SenseGlove Virtual Hand Component
	The SenseGlove Wrist Tracker Component

	The SenseGlove Console Commands
	SGGameUserSettings Console Commands
	SG_GetEngineScalabilitySettings
	SG_SetEngineScalabilitySettings

	Deploying to Android (Standalone)
	Third-Party Tutorials

	Third-Party Tutorials: Android Standalone Mode Deployment
	On-Click Unreal Engine 5.7 Android Packaging & APK Build Tutorial | Meta Quest & HTC VIVE Standalone
	Build & Deploy Unreal Engine 5.5 Projects APK to Android & Meta Quest 3S/3/Pro/2 in Standalone Mode
	Unreal Engine OpenXR Hand-Tracking on Android with Meta XR (Quest 3S/3/Pro/2) and HTC VIVE OpenXR (Focus Vision/XR Elite/Focus 3) Plugins

	Upgrade Guide
	Optimizing Your Project for Higher FPS
	Meta Quest Link Advanced Graphics Preferences
	HTC VIVE Specific Optimizations in Standalone Mode
	Setting a Custom Pixel Density
	Setting a Lower Refresh Rate
	HTC VIVE Optimal Rendering Settings

	Game User Settings and Engine Scalability Settings
	Optimizing Unreal Projects for Mobile
	General Rendering Settings
	Texture Settings
	Lighting Settings
	Post-Processing Settings
	Materials and Shaders
	Level of Detail (LOD) Settings
	Engine Scalability Settings
	Physics and Collision
	Audio Settings
	Rendering API
	Culling

	Third-Party Tutorials: Optimizing Your Project for Higher FPS
	Optimizing Unreal Engine VR Projects for Higher Framerates (Meta Quest, HTC VIVE, FFR, ETFR, NVIDIA DLSS, AMD FSR, and Intel XeSS Tips Included!)

	Safe and Reliable Glove Access in Blueprint
	OpenXR
	Consuming FXRHandTrackingState
	FXRHandTrackingState in Unreal Engine
	Structure Members of FXRHandTrackingState
	Organization of FXRHandTrackingState
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRHandTrackingState in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRHandTrackingState in C++
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData
	FXRMotionControllerData in Unreal Engine
	Structure Members of FXRMotionControllerData
	Organization of FXRMotionControllerData
	Processing the Data for Drawing and Animating a Virtual Hand

	Consuming FXRMotionControllerData in Blueprint
	Drawing and Animating Virtual Hands

	Consuming FXRMotionControllerData in C++
	Drawing and Animating Virtual Hands

	Third-Party OpenXR Integrations
	Comparison of Supported OpenXR Hand-Interaction Systems
	VR Expansion Plugin
	SGVRETemplate Demo Scene
	SGVRETemplate Modifications
	Blueprint Changes
	C++ Changes
	Changing Wrist-Tracker Offsets
	Changing Motion Source
	Adding More Gestures
	Video Summary

	SGVRETemplate Demo Calibration Scene

	Third-Party Tutorials: Consuming OpenXR Hand-Tracking Data
	Introduction to Virtual Reality, OpenXR Hand-Tracking, and Gesture Detection in Unreal Engine
	Procedural Virtual Hand Mesh Animation Using OpenXR Hand-Tracking Data

	Low-level Blueprint API
	Low-level C++ API
	Platform Support Matrix
	Planned Features Completion Status
	Implemented as of v2.7.x
	Upcoming features planned for the v2.7.x release
	Planned features long-term

	Changelog
	[2.7.0] - 2025-11-18
	Added
	Fixed
	Changed
	Removed
	Deprecated
	Documentation

	[2.6.3] - 2025-06-27
	Documentation

	[2.6.2] - 2025-06-10
	Documentation

	[2.6.1] - 2025-06-05
	Fixed
	Changed
	Removed
	Documentation

	[2.6.0] - 2025-06-04
	Added
	Fixed
	Changed
	Removed
	Deprecated
	Documentation

	[2.5.0] - 2025-05-09
	Added
	Fixed
	Changed
	Removed
	Documentation

	[2.4.2] - 2025-02-17
	Documentation

	[2.4.1] - 2025-02-14
	Documentation

	[2.4.0] - 2025-02-14
	Added
	Fixed
	Changed
	Deprecated
	Documentation

	[2.3.2] - 2025-01-28
	Fixed

	[2.3.1] - 2024-11-27
	Fixed
	Changed

	[2.3.0] - 2024-11-13
	Added
	Fixed

	[2.2.2] - 2024-11-08
	Fixed

	[2.2.1] - 2024-10-23
	Documentation

	[2.2.0] - 2024-10-22
	Added
	Fixed
	Changed
	Documentation

	[2.1.4] - 2024-10-22
	Documentation

	[2.1.3] - 2024-10-11
	Added
	Fixed
	Changed

	[2.1.2] - 2024-09-02
	Fixed

	[2.1.1] - 2024-08-18
	Fixed
	Removed

	[2.1.0] - 2024-08-16
	Added
	Fixed
	Changed
	Removed
	Known Issues

	[2.0.8] - 2024-07-15
	Fixed

	[2.0.7] - 2024-05-29
	Fixed

	[2.0.6] - 2024-05-29
	Removed
	Fixed

	[2.0.5] - 2024-05-22
	Fixed

	[2.0.4] - 2024-05-17
	Fixed

	[2.0.3] - 2024-05-15
	Fixed
	Removed

	[2.0.2] - 2024-04-25
	Added
	Changed

	[2.0.1] - 2024-04-15
	Fixed
	Changed

	[2.0.0] - 2024-03-22
	Added
	Fixed
	Changed
	Removed

	[1.9.8] - 2024-03-12
	Fixed
	Changed

	[1.9.7] - 2024-02-18
	Fixed

	[1.9.6] - 2024-02-14
	Fixed

	[1.9.5] - 2024-02-09
	Fixed

	[1.9.4] - 2024-02-08
	Fixed

	[1.9.3] - 2024-02-03
	Fixed

	[1.9.2] - 2023-11-03
	Added
	Fixed

	[1.9.1] - 2023-10-11
	Fixed

	[1.9.0] - 2023-10-10
	Changed
	Fixed

	[1.8.0] - 2023-10-10
	Added
	Fixed

	[1.7.0] - 2023-09-14
	Added
	Changed
	Fixed

	[1.6.1] - 2023-08-14
	Fixed

	[1.6.0] - 2023-08-14
	Added
	Fixed
	Changed

	[1.5.3] - 2023-07-19
	Fixed
	Changed

	[1.5.2] - 2023-07-19
	Fixed

	[1.5.1] - 2023-07-13
	Fixed

	[1.5.0] - 2023-06-16
	Added
	Fixed
	Changed
	Removed

	[1.4.3] - 2023-06-01
	Fixed

	[1.4.2] - 2023-06-01
	Fixed

	[1.4.1] - 2023-05-29
	Fixed
	Removed

	[1.4.0] - 2023-05-19
	Added
	Fixed
	Changed
	Removed
	Deprecated

	[1.3.1] - 2023-04-28
	Fixed

	[1.3.0] - 2023-04-28
	Added
	Fixed
	Changed

	[1.2.1] - 2023-03-30
	Fixed

	[1.2.0] - 2023-03-28
	Added
	Changed
	Removed
	Known Issues

	[1.1.1] - 2023-02-07
	Added
	Fixed
	Changed

	[1.1.0] - 2023-02-03
	Added
	Fixed
	Changed
	Removed

	[1.0.4] - 2022-12-02
	Added
	Changed

	[1.0.3] - 2022-11-29
	Changed

	[1.0.2] - 2022-11-27
	Added
	Fixed

	[1.0.1] - 2022-11-25
	Changed
	Fixed

	[1.0.0] - 2022-11-24
	Added

	Directory Structure
	Extra Resources
	Examples and Demo Projects
	Third-Party OpenXR Integration Demos

	Tutorials
	Third-Party Tutorials
	OpenXR Tutorials
	Android (Meta Quest / HTC VIVE) Tutorials
	VR Optimization

	SenseGlove Unreal Engine Plugin License
	SenseGlove Unreal Engine Handbook License
	Third Party Licenses
	SenseGlove SDK License
	SGBLE and SGBLExx Rust Dependency Licenses
	Boost C++ Libraries License
	{fmt} Formatting Library License
	Loguru Logging Library License
	Serial Communication Library License
	Build Information

